Mister Exam

lg^2x-4lgx-5>0 inequation

A inequation with variable

The solution

You have entered [src]
   2                      
log (x) - 4*log(x) - 5 > 0
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 > 0$$
log(x)^2 - 4*log(x) - 5 > 0
Detail solution
Given the inequality:
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 = 0$$
Solve:
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
This roots
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + e^{-1}$$
=
$$- \frac{1}{10} + e^{-1}$$
substitute to the expression
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 > 0$$
$$-5 + \left(\log{\left(- \frac{1}{10} + e^{-1} \right)}^{2} - 4 \log{\left(- \frac{1}{10} + e^{-1} \right)}\right) > 0$$
        2/  1     -1\        /  1     -1\    
-5 + log |- -- + e  | - 4*log|- -- + e  | > 0
         \  10      /        \  10      /    

one of the solutions of our inequality is:
$$x < e^{-1}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < e^{-1}$$
$$x > e^{5}$$
Solving inequality on a graph
Rapid solution 2 [src]
     -1      5     
(0, e  ) U (e , oo)
$$x\ in\ \left(0, e^{-1}\right) \cup \left(e^{5}, \infty\right)$$
x in Union(Interval.open(0, exp(-1)), Interval.open(exp(5), oo))
Rapid solution [src]
  /   /            -1\     /         5    \\
Or\And\0 < x, x < e  /, And\x < oo, e  < x//
$$\left(0 < x \wedge x < e^{-1}\right) \vee \left(x < \infty \wedge e^{5} < x\right)$$
((0 < x)∧(x < exp(-1)))∨((x < oo)∧(exp(5) < x))