Given the inequality:
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 = 0$$
Solve:
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
This roots
$$x_{1} = e^{-1}$$
$$x_{2} = e^{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + e^{-1}$$
=
$$- \frac{1}{10} + e^{-1}$$
substitute to the expression
$$\left(\log{\left(x \right)}^{2} - 4 \log{\left(x \right)}\right) - 5 > 0$$
$$-5 + \left(\log{\left(- \frac{1}{10} + e^{-1} \right)}^{2} - 4 \log{\left(- \frac{1}{10} + e^{-1} \right)}\right) > 0$$
2/ 1 -1\ / 1 -1\
-5 + log |- -- + e | - 4*log|- -- + e | > 0
\ 10 / \ 10 / one of the solutions of our inequality is:
$$x < e^{-1}$$
_____ _____
\ /
-------ο-------ο-------
x1 x2Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < e^{-1}$$
$$x > e^{5}$$