Mister Exam

Other calculators

tg^2x<9 inequation

A inequation with variable

The solution

You have entered [src]
   2       
tan (x) < 9
tan2(x)<9\tan^{2}{\left(x \right)} < 9
tan(x)^2 < 9
Detail solution
Given the inequality:
tan2(x)<9\tan^{2}{\left(x \right)} < 9
To solve this inequality, we must first solve the corresponding equation:
tan2(x)=9\tan^{2}{\left(x \right)} = 9
Solve:
Given the equation
tan2(x)=9\tan^{2}{\left(x \right)} = 9
transform
tan2(x)9=0\tan^{2}{\left(x \right)} - 9 = 0
tan2(x)9=0\tan^{2}{\left(x \right)} - 9 = 0
Do replacement
w=tan(x)w = \tan{\left(x \right)}
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=0b = 0
c=9c = -9
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (1) * (-9) = 36

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
w1=3w_{1} = 3
w2=3w_{2} = -3
do backward replacement
tan(x)=w\tan{\left(x \right)} = w
Given the equation
tan(x)=w\tan{\left(x \right)} = w
- this is the simplest trigonometric equation
This equation is transformed to
x=πn+atan(w)x = \pi n + \operatorname{atan}{\left(w \right)}
Or
x=πn+atan(w)x = \pi n + \operatorname{atan}{\left(w \right)}
, where n - is a integer
substitute w:
x1=πn+atan(w1)x_{1} = \pi n + \operatorname{atan}{\left(w_{1} \right)}
x1=πn+atan(3)x_{1} = \pi n + \operatorname{atan}{\left(3 \right)}
x1=πn+atan(3)x_{1} = \pi n + \operatorname{atan}{\left(3 \right)}
x2=πn+atan(w2)x_{2} = \pi n + \operatorname{atan}{\left(w_{2} \right)}
x2=πn+atan(3)x_{2} = \pi n + \operatorname{atan}{\left(-3 \right)}
x2=πnatan(3)x_{2} = \pi n - \operatorname{atan}{\left(3 \right)}
x1=atan(3)x_{1} = - \operatorname{atan}{\left(3 \right)}
x2=atan(3)x_{2} = \operatorname{atan}{\left(3 \right)}
x1=atan(3)x_{1} = - \operatorname{atan}{\left(3 \right)}
x2=atan(3)x_{2} = \operatorname{atan}{\left(3 \right)}
This roots
x1=atan(3)x_{1} = - \operatorname{atan}{\left(3 \right)}
x2=atan(3)x_{2} = \operatorname{atan}{\left(3 \right)}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
atan(3)110- \operatorname{atan}{\left(3 \right)} - \frac{1}{10}
=
atan(3)110- \operatorname{atan}{\left(3 \right)} - \frac{1}{10}
substitute to the expression
tan2(x)<9\tan^{2}{\left(x \right)} < 9
tan2(atan(3)110)<9\tan^{2}{\left(- \operatorname{atan}{\left(3 \right)} - \frac{1}{10} \right)} < 9
   2                    
tan (1/10 + atan(3)) < 9
    

but
   2                    
tan (1/10 + atan(3)) > 9
    

Then
x<atan(3)x < - \operatorname{atan}{\left(3 \right)}
no execute
one of the solutions of our inequality is:
x>atan(3)x<atan(3)x > - \operatorname{atan}{\left(3 \right)} \wedge x < \operatorname{atan}{\left(3 \right)}
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
0-80-60-40-202040608002000000
Rapid solution [src]
Or(And(0 <= x, x < atan(3)), And(x <= pi, pi - atan(3) < x))
(0xx<atan(3))(xππatan(3)<x)\left(0 \leq x \wedge x < \operatorname{atan}{\left(3 \right)}\right) \vee \left(x \leq \pi \wedge \pi - \operatorname{atan}{\left(3 \right)} < x\right)
((0 <= x)∧(x < atan(3)))∨((x <= pi)∧(pi - atan(3) < x))
Rapid solution 2 [src]
[0, atan(3)) U (pi - atan(3), pi]
x in [0,atan(3))(πatan(3),π]x\ in\ \left[0, \operatorname{atan}{\left(3 \right)}\right) \cup \left(\pi - \operatorname{atan}{\left(3 \right)}, \pi\right]
x in Union(Interval.Ropen(0, atan(3)), Interval.Lopen(pi - atan(3), pi))