Mister Exam

Other calculators

cos(x/3)>√2/2 inequation

A inequation with variable

The solution

You have entered [src]
           ___
   /x\   \/ 2 
cos|-| > -----
   \3/     2  
$$\cos{\left(\frac{x}{3} \right)} > \frac{\sqrt{2}}{2}$$
cos(x/3) > sqrt(2)/2
Detail solution
Given the inequality:
$$\cos{\left(\frac{x}{3} \right)} > \frac{\sqrt{2}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(\frac{x}{3} \right)} = \frac{\sqrt{2}}{2}$$
Solve:
Given the equation
$$\cos{\left(\frac{x}{3} \right)} = \frac{\sqrt{2}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$\frac{x}{3} = \pi n + \operatorname{acos}{\left(\frac{\sqrt{2}}{2} \right)}$$
$$\frac{x}{3} = \pi n - \pi + \operatorname{acos}{\left(\frac{\sqrt{2}}{2} \right)}$$
Or
$$\frac{x}{3} = \pi n + \frac{\pi}{4}$$
$$\frac{x}{3} = \pi n - \frac{3 \pi}{4}$$
, where n - is a integer
Divide both parts of the equation by
$$\frac{1}{3}$$
$$x_{1} = 3 \pi n + \frac{3 \pi}{4}$$
$$x_{2} = 3 \pi n - \frac{9 \pi}{4}$$
$$x_{1} = 3 \pi n + \frac{3 \pi}{4}$$
$$x_{2} = 3 \pi n - \frac{9 \pi}{4}$$
This roots
$$x_{1} = 3 \pi n + \frac{3 \pi}{4}$$
$$x_{2} = 3 \pi n - \frac{9 \pi}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(3 \pi n + \frac{3 \pi}{4}\right) + - \frac{1}{10}$$
=
$$3 \pi n - \frac{1}{10} + \frac{3 \pi}{4}$$
substitute to the expression
$$\cos{\left(\frac{x}{3} \right)} > \frac{\sqrt{2}}{2}$$
$$\cos{\left(\frac{3 \pi n - \frac{1}{10} + \frac{3 \pi}{4}}{3} \right)} > \frac{\sqrt{2}}{2}$$
                          ___
   /  1    pi       \   \/ 2 
cos|- -- + -- + pi*n| > -----
   \  30   4        /     2  
                        

Then
$$x < 3 \pi n + \frac{3 \pi}{4}$$
no execute
one of the solutions of our inequality is:
$$x > 3 \pi n + \frac{3 \pi}{4} \wedge x < 3 \pi n - \frac{9 \pi}{4}$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
  /   /                  /   _____________\\     /                   /   _____________\           \\
  |   |                  |  /         ___ ||     |                   |  /         ___ |           ||
Or\And\0 <= x, x < 6*atan\\/  3 - 2*\/ 2  //, And\x <= 6*pi, - 6*atan\\/  3 - 2*\/ 2  / + 6*pi < x//
$$\left(0 \leq x \wedge x < 6 \operatorname{atan}{\left(\sqrt{3 - 2 \sqrt{2}} \right)}\right) \vee \left(x \leq 6 \pi \wedge - 6 \operatorname{atan}{\left(\sqrt{3 - 2 \sqrt{2}} \right)} + 6 \pi < x\right)$$
((0 <= x)∧(x < 6*atan(sqrt(3 - 2*sqrt(2)))))∨((x <= 6*pi)∧(-6*atan(sqrt(3 - 2*sqrt(2))) + 6*pi < x))
Rapid solution 2 [src]
          /   _____________\             /   _____________\              
          |  /         ___ |             |  /         ___ |              
[0, 6*atan\\/  3 - 2*\/ 2  /) U (- 6*atan\\/  3 - 2*\/ 2  / + 6*pi, 6*pi]
$$x\ in\ \left[0, 6 \operatorname{atan}{\left(\sqrt{3 - 2 \sqrt{2}} \right)}\right) \cup \left(- 6 \operatorname{atan}{\left(\sqrt{3 - 2 \sqrt{2}} \right)} + 6 \pi, 6 \pi\right]$$
x in Union(Interval.Ropen(0, 6*atan(sqrt(3 - 2*sqrt(2)))), Interval.Lopen(-6*atan(sqrt(3 - 2*sqrt(2))) + 6*pi, 6*pi))