Mister Exam

Other calculators

22x+2-42x>3 inequation

A inequation with variable

The solution

You have entered [src]
22*x + 2 - 42*x > 3
$$- 42 x + \left(22 x + 2\right) > 3$$
-42*x + 22*x + 2 > 3
Detail solution
Given the inequality:
$$- 42 x + \left(22 x + 2\right) > 3$$
To solve this inequality, we must first solve the corresponding equation:
$$- 42 x + \left(22 x + 2\right) = 3$$
Solve:
Given the linear equation:
22*x+2-42*x = 3

Looking for similar summands in the left part:
2 - 20*x = 3

Move free summands (without x)
from left part to right part, we given:
$$- 20 x = 1$$
Divide both parts of the equation by -20
x = 1 / (-20)

$$x_{1} = - \frac{1}{20}$$
$$x_{1} = - \frac{1}{20}$$
This roots
$$x_{1} = - \frac{1}{20}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + - \frac{1}{20}$$
=
$$- \frac{3}{20}$$
substitute to the expression
$$- 42 x + \left(22 x + 2\right) > 3$$
$$\left(\frac{\left(-3\right) 22}{20} + 2\right) - \frac{\left(-3\right) 42}{20} > 3$$
5 > 3

the solution of our inequality is:
$$x < - \frac{1}{20}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
And(-oo < x, x < -1/20)
$$-\infty < x \wedge x < - \frac{1}{20}$$
(-oo < x)∧(x < -1/20)
Rapid solution 2 [src]
(-oo, -1/20)
$$x\ in\ \left(-\infty, - \frac{1}{20}\right)$$
x in Interval.open(-oo, -1/20)