Mister Exam

Other calculators


tgx<=1/sqrt(3)

tgx<=1/sqrt(3) inequation

A inequation with variable

The solution

You have entered [src]
              1  
tan(x) <= 1*-----
              ___
            \/ 3 
$$\tan{\left(x \right)} \leq 1 \cdot \frac{1}{\sqrt{3}}$$
tan(x) <= 1/sqrt(3)
Detail solution
Given the inequality:
$$\tan{\left(x \right)} \leq 1 \cdot \frac{1}{\sqrt{3}}$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(x \right)} = 1 \cdot \frac{1}{\sqrt{3}}$$
Solve:
Given the equation
$$\tan{\left(x \right)} = 1 \cdot \frac{1}{\sqrt{3}}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{atan}{\left(\frac{\sqrt{3}}{3} \right)}$$
Or
$$x = \pi n + \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{1} = \pi n + \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{6}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\tan{\left(x \right)} \leq 1 \cdot \frac{1}{\sqrt{3}}$$
$$\tan{\left(\pi n - \frac{1}{10} + \frac{\pi}{6} \right)} \leq 1 \cdot \frac{1}{\sqrt{3}}$$
                  ___
   /1    pi\    \/ 3 
cot|-- + --| <= -----
   \10   3 /      3  
                

the solution of our inequality is:
$$x \leq \pi n + \frac{\pi}{6}$$
 _____          
      \    
-------•-------
       x_1
Solving inequality on a graph
Rapid solution [src]
  /   /             pi\     /pi            \\
Or|And|0 <= x, x <= --|, And|-- < x, x < pi||
  \   \             6 /     \2             //
$$\left(0 \leq x \wedge x \leq \frac{\pi}{6}\right) \vee \left(\frac{\pi}{2} < x \wedge x < \pi\right)$$
((0 <= x)∧(x <= pi/6))∨((x < pi)∧(pi/2 < x))
Rapid solution 2 [src]
    pi     pi     
[0, --] U (--, pi)
    6      2      
$$x\ in\ \left[0, \frac{\pi}{6}\right] \cup \left(\frac{\pi}{2}, \pi\right)$$
x in Union(Interval(0, pi/6), Interval.open(pi/2, pi))
The graph
tgx<=1/sqrt(3) inequation