Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 5^x-cos(x)
Limit of (2+x^2-3*x)/(3+x^2-4*x)
Limit of sin(2*x)/(5*x)
Limit of ((1+2*x)/(-1+x))^(4*x)
Derivative of
:
sqrt(3)/2
Identical expressions
sqrt(three)/ two
square root of (3) divide by 2
square root of (three) divide by two
√(3)/2
sqrt3/2
sqrt(3) divide by 2
Limit of the function
/
sqrt(3)/2
Limit of the function sqrt(3)/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ |\/ 3 | lim |-----| x->oo\ 2 /
lim
x
→
∞
(
3
2
)
\lim_{x \to \infty}\left(\frac{\sqrt{3}}{2}\right)
x
→
∞
lim
(
2
3
)
Limit(sqrt(3)/2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
3
2
)
=
3
2
\lim_{x \to \infty}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
∞
lim
(
2
3
)
=
2
3
lim
x
→
0
−
(
3
2
)
=
3
2
\lim_{x \to 0^-}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
0
−
lim
(
2
3
)
=
2
3
More at x→0 from the left
lim
x
→
0
+
(
3
2
)
=
3
2
\lim_{x \to 0^+}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
0
+
lim
(
2
3
)
=
2
3
More at x→0 from the right
lim
x
→
1
−
(
3
2
)
=
3
2
\lim_{x \to 1^-}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
1
−
lim
(
2
3
)
=
2
3
More at x→1 from the left
lim
x
→
1
+
(
3
2
)
=
3
2
\lim_{x \to 1^+}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
1
+
lim
(
2
3
)
=
2
3
More at x→1 from the right
lim
x
→
−
∞
(
3
2
)
=
3
2
\lim_{x \to -\infty}\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}
x
→
−
∞
lim
(
2
3
)
=
2
3
More at x→-oo
Rapid solution
[src]
___ \/ 3 ----- 2
3
2
\frac{\sqrt{3}}{2}
2
3
Expand and simplify
The graph