Mister Exam

Other calculators

cos(t)<=0 inequation

A inequation with variable

The solution

You have entered [src]
cos(t) <= 0
cos(t)0\cos{\left(t \right)} \leq 0
cos(t) <= 0
Detail solution
Given the inequality:
cos(t)0\cos{\left(t \right)} \leq 0
To solve this inequality, we must first solve the corresponding equation:
cos(t)=0\cos{\left(t \right)} = 0
Solve:
Given the equation
cos(t)=0\cos{\left(t \right)} = 0
transform
cos(t)1=0\cos{\left(t \right)} - 1 = 0
cos(t)1=0\cos{\left(t \right)} - 1 = 0
Do replacement
w=cos(t)w = \cos{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=1w = 1
We get the answer: w = 1
do backward replacement
cos(t)=w\cos{\left(t \right)} = w
substitute w:
x1=48.6946861306418x_{1} = 48.6946861306418
x2=54.9778714378214x_{2} = 54.9778714378214
x3=98.9601685880785x_{3} = -98.9601685880785
x4=67.5442420521806x_{4} = 67.5442420521806
x5=76.9690200129499x_{5} = 76.9690200129499
x6=36.1283155162826x_{6} = 36.1283155162826
x7=58.1194640914112x_{7} = 58.1194640914112
x8=14.1371669411541x_{8} = 14.1371669411541
x9=29.845130209103x_{9} = -29.845130209103
x10=61.261056745001x_{10} = 61.261056745001
x11=36.1283155162826x_{11} = -36.1283155162826
x12=4.71238898038469x_{12} = -4.71238898038469
x13=39.2699081698724x_{13} = -39.2699081698724
x14=1.5707963267949x_{14} = 1.5707963267949
x15=168.075206967054x_{15} = -168.075206967054
x16=14.1371669411541x_{16} = -14.1371669411541
x17=64.4026493985908x_{17} = -64.4026493985908
x18=67.5442420521806x_{18} = -67.5442420521806
x19=92.6769832808989x_{19} = 92.6769832808989
x20=51.8362787842316x_{20} = -51.8362787842316
x21=86.3937979737193x_{21} = -86.3937979737193
x22=42.4115008234622x_{22} = 42.4115008234622
x23=17.2787595947439x_{23} = -17.2787595947439
x24=45.553093477052x_{24} = -45.553093477052
x25=89.5353906273091x_{25} = -89.5353906273091
x26=1.5707963267949x_{26} = -1.5707963267949
x27=39.2699081698724x_{27} = 39.2699081698724
x28=23.5619449019235x_{28} = 23.5619449019235
x29=7.85398163397448x_{29} = 7.85398163397448
x30=58.1194640914112x_{30} = -58.1194640914112
x31=61.261056745001x_{31} = -61.261056745001
x32=73.8274273593601x_{32} = -73.8274273593601
x33=73.8274273593601x_{33} = 73.8274273593601
x34=29.845130209103x_{34} = 29.845130209103
x35=4.71238898038469x_{35} = 4.71238898038469
x36=86.3937979737193x_{36} = 86.3937979737193
x37=64.4026493985908x_{37} = 64.4026493985908
x38=89.5353906273091x_{38} = 89.5353906273091
x39=20.4203522483337x_{39} = -20.4203522483337
x40=387.986692718339x_{40} = -387.986692718339
x41=26.7035375555132x_{41} = -26.7035375555132
x42=98.9601685880785x_{42} = 98.9601685880785
x43=51.8362787842316x_{43} = 51.8362787842316
x44=83.2522053201295x_{44} = 83.2522053201295
x45=48.6946861306418x_{45} = -48.6946861306418
x46=54.9778714378214x_{46} = -54.9778714378214
x47=70.6858347057703x_{47} = 70.6858347057703
x48=95.8185759344887x_{48} = -95.8185759344887
x49=26.7035375555132x_{49} = 26.7035375555132
x50=80.1106126665397x_{50} = 80.1106126665397
x51=23.5619449019235x_{51} = -23.5619449019235
x52=7.85398163397448x_{52} = -7.85398163397448
x53=83.2522053201295x_{53} = -83.2522053201295
x54=76.9690200129499x_{54} = -76.9690200129499
x55=42.4115008234622x_{55} = -42.4115008234622
x56=32.9867228626928x_{56} = -32.9867228626928
x57=17.2787595947439x_{57} = 17.2787595947439
x58=32.9867228626928x_{58} = 32.9867228626928
x59=20.4203522483337x_{59} = 20.4203522483337
x60=70.6858347057703x_{60} = -70.6858347057703
x61=10.9955742875643x_{61} = -10.9955742875643
x62=92.6769832808989x_{62} = -92.6769832808989
x63=45.553093477052x_{63} = 45.553093477052
x64=10.9955742875643x_{64} = 10.9955742875643
x65=80.1106126665397x_{65} = -80.1106126665397
x66=95.8185759344887x_{66} = 95.8185759344887
x67=2266.65909956504x_{67} = -2266.65909956504
x1=48.6946861306418x_{1} = 48.6946861306418
x2=54.9778714378214x_{2} = 54.9778714378214
x3=98.9601685880785x_{3} = -98.9601685880785
x4=67.5442420521806x_{4} = 67.5442420521806
x5=76.9690200129499x_{5} = 76.9690200129499
x6=36.1283155162826x_{6} = 36.1283155162826
x7=58.1194640914112x_{7} = 58.1194640914112
x8=14.1371669411541x_{8} = 14.1371669411541
x9=29.845130209103x_{9} = -29.845130209103
x10=61.261056745001x_{10} = 61.261056745001
x11=36.1283155162826x_{11} = -36.1283155162826
x12=4.71238898038469x_{12} = -4.71238898038469
x13=39.2699081698724x_{13} = -39.2699081698724
x14=1.5707963267949x_{14} = 1.5707963267949
x15=168.075206967054x_{15} = -168.075206967054
x16=14.1371669411541x_{16} = -14.1371669411541
x17=64.4026493985908x_{17} = -64.4026493985908
x18=67.5442420521806x_{18} = -67.5442420521806
x19=92.6769832808989x_{19} = 92.6769832808989
x20=51.8362787842316x_{20} = -51.8362787842316
x21=86.3937979737193x_{21} = -86.3937979737193
x22=42.4115008234622x_{22} = 42.4115008234622
x23=17.2787595947439x_{23} = -17.2787595947439
x24=45.553093477052x_{24} = -45.553093477052
x25=89.5353906273091x_{25} = -89.5353906273091
x26=1.5707963267949x_{26} = -1.5707963267949
x27=39.2699081698724x_{27} = 39.2699081698724
x28=23.5619449019235x_{28} = 23.5619449019235
x29=7.85398163397448x_{29} = 7.85398163397448
x30=58.1194640914112x_{30} = -58.1194640914112
x31=61.261056745001x_{31} = -61.261056745001
x32=73.8274273593601x_{32} = -73.8274273593601
x33=73.8274273593601x_{33} = 73.8274273593601
x34=29.845130209103x_{34} = 29.845130209103
x35=4.71238898038469x_{35} = 4.71238898038469
x36=86.3937979737193x_{36} = 86.3937979737193
x37=64.4026493985908x_{37} = 64.4026493985908
x38=89.5353906273091x_{38} = 89.5353906273091
x39=20.4203522483337x_{39} = -20.4203522483337
x40=387.986692718339x_{40} = -387.986692718339
x41=26.7035375555132x_{41} = -26.7035375555132
x42=98.9601685880785x_{42} = 98.9601685880785
x43=51.8362787842316x_{43} = 51.8362787842316
x44=83.2522053201295x_{44} = 83.2522053201295
x45=48.6946861306418x_{45} = -48.6946861306418
x46=54.9778714378214x_{46} = -54.9778714378214
x47=70.6858347057703x_{47} = 70.6858347057703
x48=95.8185759344887x_{48} = -95.8185759344887
x49=26.7035375555132x_{49} = 26.7035375555132
x50=80.1106126665397x_{50} = 80.1106126665397
x51=23.5619449019235x_{51} = -23.5619449019235
x52=7.85398163397448x_{52} = -7.85398163397448
x53=83.2522053201295x_{53} = -83.2522053201295
x54=76.9690200129499x_{54} = -76.9690200129499
x55=42.4115008234622x_{55} = -42.4115008234622
x56=32.9867228626928x_{56} = -32.9867228626928
x57=17.2787595947439x_{57} = 17.2787595947439
x58=32.9867228626928x_{58} = 32.9867228626928
x59=20.4203522483337x_{59} = 20.4203522483337
x60=70.6858347057703x_{60} = -70.6858347057703
x61=10.9955742875643x_{61} = -10.9955742875643
x62=92.6769832808989x_{62} = -92.6769832808989
x63=45.553093477052x_{63} = 45.553093477052
x64=10.9955742875643x_{64} = 10.9955742875643
x65=80.1106126665397x_{65} = -80.1106126665397
x66=95.8185759344887x_{66} = 95.8185759344887
x67=2266.65909956504x_{67} = -2266.65909956504
This roots
x67=2266.65909956504x_{67} = -2266.65909956504
x40=387.986692718339x_{40} = -387.986692718339
x15=168.075206967054x_{15} = -168.075206967054
x3=98.9601685880785x_{3} = -98.9601685880785
x48=95.8185759344887x_{48} = -95.8185759344887
x62=92.6769832808989x_{62} = -92.6769832808989
x25=89.5353906273091x_{25} = -89.5353906273091
x21=86.3937979737193x_{21} = -86.3937979737193
x53=83.2522053201295x_{53} = -83.2522053201295
x65=80.1106126665397x_{65} = -80.1106126665397
x54=76.9690200129499x_{54} = -76.9690200129499
x32=73.8274273593601x_{32} = -73.8274273593601
x60=70.6858347057703x_{60} = -70.6858347057703
x18=67.5442420521806x_{18} = -67.5442420521806
x17=64.4026493985908x_{17} = -64.4026493985908
x31=61.261056745001x_{31} = -61.261056745001
x30=58.1194640914112x_{30} = -58.1194640914112
x46=54.9778714378214x_{46} = -54.9778714378214
x20=51.8362787842316x_{20} = -51.8362787842316
x45=48.6946861306418x_{45} = -48.6946861306418
x24=45.553093477052x_{24} = -45.553093477052
x55=42.4115008234622x_{55} = -42.4115008234622
x13=39.2699081698724x_{13} = -39.2699081698724
x11=36.1283155162826x_{11} = -36.1283155162826
x56=32.9867228626928x_{56} = -32.9867228626928
x9=29.845130209103x_{9} = -29.845130209103
x41=26.7035375555132x_{41} = -26.7035375555132
x51=23.5619449019235x_{51} = -23.5619449019235
x39=20.4203522483337x_{39} = -20.4203522483337
x23=17.2787595947439x_{23} = -17.2787595947439
x16=14.1371669411541x_{16} = -14.1371669411541
x61=10.9955742875643x_{61} = -10.9955742875643
x52=7.85398163397448x_{52} = -7.85398163397448
x12=4.71238898038469x_{12} = -4.71238898038469
x26=1.5707963267949x_{26} = -1.5707963267949
x14=1.5707963267949x_{14} = 1.5707963267949
x35=4.71238898038469x_{35} = 4.71238898038469
x29=7.85398163397448x_{29} = 7.85398163397448
x64=10.9955742875643x_{64} = 10.9955742875643
x8=14.1371669411541x_{8} = 14.1371669411541
x57=17.2787595947439x_{57} = 17.2787595947439
x59=20.4203522483337x_{59} = 20.4203522483337
x28=23.5619449019235x_{28} = 23.5619449019235
x49=26.7035375555132x_{49} = 26.7035375555132
x34=29.845130209103x_{34} = 29.845130209103
x58=32.9867228626928x_{58} = 32.9867228626928
x6=36.1283155162826x_{6} = 36.1283155162826
x27=39.2699081698724x_{27} = 39.2699081698724
x22=42.4115008234622x_{22} = 42.4115008234622
x63=45.553093477052x_{63} = 45.553093477052
x1=48.6946861306418x_{1} = 48.6946861306418
x43=51.8362787842316x_{43} = 51.8362787842316
x2=54.9778714378214x_{2} = 54.9778714378214
x7=58.1194640914112x_{7} = 58.1194640914112
x10=61.261056745001x_{10} = 61.261056745001
x37=64.4026493985908x_{37} = 64.4026493985908
x4=67.5442420521806x_{4} = 67.5442420521806
x47=70.6858347057703x_{47} = 70.6858347057703
x33=73.8274273593601x_{33} = 73.8274273593601
x5=76.9690200129499x_{5} = 76.9690200129499
x50=80.1106126665397x_{50} = 80.1106126665397
x44=83.2522053201295x_{44} = 83.2522053201295
x36=86.3937979737193x_{36} = 86.3937979737193
x38=89.5353906273091x_{38} = 89.5353906273091
x19=92.6769832808989x_{19} = 92.6769832808989
x66=95.8185759344887x_{66} = 95.8185759344887
x42=98.9601685880785x_{42} = 98.9601685880785
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x67x_{0} \leq x_{67}
For example, let's take the point
x0=x67110x_{0} = x_{67} - \frac{1}{10}
=
2266.65909956504+110-2266.65909956504 + - \frac{1}{10}
=
2266.75909956504-2266.75909956504
substitute to the expression
cos(t)0\cos{\left(t \right)} \leq 0
cos(t)0\cos{\left(t \right)} \leq 0
cos(t) <= 0

Then
x2266.65909956504x \leq -2266.65909956504
no execute
one of the solutions of our inequality is:
x2266.65909956504x387.986692718339x \geq -2266.65909956504 \wedge x \leq -387.986692718339
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       x67      x40      x15      x3      x48      x62      x25      x21      x53      x65      x54      x32      x60      x18      x17      x31      x30      x46      x20      x45      x24      x55      x13      x11      x56      x9      x41      x51      x39      x23      x16      x61      x52      x12      x26      x14      x35      x29      x64      x8      x57      x59      x28      x49      x34      x58      x6      x27      x22      x63      x1      x43      x2      x7      x10      x37      x4      x47      x33      x5      x50      x44      x36      x38      x19      x66      x42

Other solutions will get with the changeover to the next point
etc.
The answer:
x2266.65909956504x387.986692718339x \geq -2266.65909956504 \wedge x \leq -387.986692718339
x168.075206967054x98.9601685880785x \geq -168.075206967054 \wedge x \leq -98.9601685880785
x95.8185759344887x92.6769832808989x \geq -95.8185759344887 \wedge x \leq -92.6769832808989
x89.5353906273091x86.3937979737193x \geq -89.5353906273091 \wedge x \leq -86.3937979737193
x83.2522053201295x80.1106126665397x \geq -83.2522053201295 \wedge x \leq -80.1106126665397
x76.9690200129499x73.8274273593601x \geq -76.9690200129499 \wedge x \leq -73.8274273593601
x70.6858347057703x67.5442420521806x \geq -70.6858347057703 \wedge x \leq -67.5442420521806
x64.4026493985908x61.261056745001x \geq -64.4026493985908 \wedge x \leq -61.261056745001
x58.1194640914112x54.9778714378214x \geq -58.1194640914112 \wedge x \leq -54.9778714378214
x51.8362787842316x48.6946861306418x \geq -51.8362787842316 \wedge x \leq -48.6946861306418
x45.553093477052x42.4115008234622x \geq -45.553093477052 \wedge x \leq -42.4115008234622
x39.2699081698724x36.1283155162826x \geq -39.2699081698724 \wedge x \leq -36.1283155162826
x32.9867228626928x29.845130209103x \geq -32.9867228626928 \wedge x \leq -29.845130209103
x26.7035375555132x23.5619449019235x \geq -26.7035375555132 \wedge x \leq -23.5619449019235
x20.4203522483337x17.2787595947439x \geq -20.4203522483337 \wedge x \leq -17.2787595947439
x14.1371669411541x10.9955742875643x \geq -14.1371669411541 \wedge x \leq -10.9955742875643
x7.85398163397448x4.71238898038469x \geq -7.85398163397448 \wedge x \leq -4.71238898038469
x1.5707963267949x1.5707963267949x \geq -1.5707963267949 \wedge x \leq 1.5707963267949
x4.71238898038469x7.85398163397448x \geq 4.71238898038469 \wedge x \leq 7.85398163397448
x10.9955742875643x14.1371669411541x \geq 10.9955742875643 \wedge x \leq 14.1371669411541
x17.2787595947439x20.4203522483337x \geq 17.2787595947439 \wedge x \leq 20.4203522483337
x23.5619449019235x26.7035375555132x \geq 23.5619449019235 \wedge x \leq 26.7035375555132
x29.845130209103x32.9867228626928x \geq 29.845130209103 \wedge x \leq 32.9867228626928
x36.1283155162826x39.2699081698724x \geq 36.1283155162826 \wedge x \leq 39.2699081698724
x42.4115008234622x45.553093477052x \geq 42.4115008234622 \wedge x \leq 45.553093477052
x48.6946861306418x51.8362787842316x \geq 48.6946861306418 \wedge x \leq 51.8362787842316
x54.9778714378214x58.1194640914112x \geq 54.9778714378214 \wedge x \leq 58.1194640914112
x61.261056745001x64.4026493985908x \geq 61.261056745001 \wedge x \leq 64.4026493985908
x67.5442420521806x70.6858347057703x \geq 67.5442420521806 \wedge x \leq 70.6858347057703
x73.8274273593601x76.9690200129499x \geq 73.8274273593601 \wedge x \leq 76.9690200129499
x80.1106126665397x83.2522053201295x \geq 80.1106126665397 \wedge x \leq 83.2522053201295
x86.3937979737193x89.5353906273091x \geq 86.3937979737193 \wedge x \leq 89.5353906273091
x92.6769832808989x95.8185759344887x \geq 92.6769832808989 \wedge x \leq 95.8185759344887
x98.9601685880785x \geq 98.9601685880785
Rapid solution [src]
   /pi            3*pi\
And|-- <= t, t <= ----|
   \2              2  /
π2tt3π2\frac{\pi}{2} \leq t \wedge t \leq \frac{3 \pi}{2}
(pi/2 <= t)∧(t <= 3*pi/2)
Rapid solution 2 [src]
 pi  3*pi 
[--, ----]
 2    2   
x in [π2,3π2]x\ in\ \left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]
x in Interval(pi/2, 3*pi/2)