Mister Exam

Other calculators

cos(t)<=0 inequation

A inequation with variable

The solution

You have entered [src]
cos(t) <= 0
$$\cos{\left(t \right)} \leq 0$$
cos(t) <= 0
Detail solution
Given the inequality:
$$\cos{\left(t \right)} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(t \right)} = 0$$
Solve:
Given the equation
$$\cos{\left(t \right)} = 0$$
transform
$$\cos{\left(t \right)} - 1 = 0$$
$$\cos{\left(t \right)} - 1 = 0$$
Do replacement
$$w = \cos{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = 1$$
We get the answer: w = 1
do backward replacement
$$\cos{\left(t \right)} = w$$
substitute w:
$$x_{1} = 48.6946861306418$$
$$x_{2} = 54.9778714378214$$
$$x_{3} = -98.9601685880785$$
$$x_{4} = 67.5442420521806$$
$$x_{5} = 76.9690200129499$$
$$x_{6} = 36.1283155162826$$
$$x_{7} = 58.1194640914112$$
$$x_{8} = 14.1371669411541$$
$$x_{9} = -29.845130209103$$
$$x_{10} = 61.261056745001$$
$$x_{11} = -36.1283155162826$$
$$x_{12} = -4.71238898038469$$
$$x_{13} = -39.2699081698724$$
$$x_{14} = 1.5707963267949$$
$$x_{15} = -168.075206967054$$
$$x_{16} = -14.1371669411541$$
$$x_{17} = -64.4026493985908$$
$$x_{18} = -67.5442420521806$$
$$x_{19} = 92.6769832808989$$
$$x_{20} = -51.8362787842316$$
$$x_{21} = -86.3937979737193$$
$$x_{22} = 42.4115008234622$$
$$x_{23} = -17.2787595947439$$
$$x_{24} = -45.553093477052$$
$$x_{25} = -89.5353906273091$$
$$x_{26} = -1.5707963267949$$
$$x_{27} = 39.2699081698724$$
$$x_{28} = 23.5619449019235$$
$$x_{29} = 7.85398163397448$$
$$x_{30} = -58.1194640914112$$
$$x_{31} = -61.261056745001$$
$$x_{32} = -73.8274273593601$$
$$x_{33} = 73.8274273593601$$
$$x_{34} = 29.845130209103$$
$$x_{35} = 4.71238898038469$$
$$x_{36} = 86.3937979737193$$
$$x_{37} = 64.4026493985908$$
$$x_{38} = 89.5353906273091$$
$$x_{39} = -20.4203522483337$$
$$x_{40} = -387.986692718339$$
$$x_{41} = -26.7035375555132$$
$$x_{42} = 98.9601685880785$$
$$x_{43} = 51.8362787842316$$
$$x_{44} = 83.2522053201295$$
$$x_{45} = -48.6946861306418$$
$$x_{46} = -54.9778714378214$$
$$x_{47} = 70.6858347057703$$
$$x_{48} = -95.8185759344887$$
$$x_{49} = 26.7035375555132$$
$$x_{50} = 80.1106126665397$$
$$x_{51} = -23.5619449019235$$
$$x_{52} = -7.85398163397448$$
$$x_{53} = -83.2522053201295$$
$$x_{54} = -76.9690200129499$$
$$x_{55} = -42.4115008234622$$
$$x_{56} = -32.9867228626928$$
$$x_{57} = 17.2787595947439$$
$$x_{58} = 32.9867228626928$$
$$x_{59} = 20.4203522483337$$
$$x_{60} = -70.6858347057703$$
$$x_{61} = -10.9955742875643$$
$$x_{62} = -92.6769832808989$$
$$x_{63} = 45.553093477052$$
$$x_{64} = 10.9955742875643$$
$$x_{65} = -80.1106126665397$$
$$x_{66} = 95.8185759344887$$
$$x_{67} = -2266.65909956504$$
$$x_{1} = 48.6946861306418$$
$$x_{2} = 54.9778714378214$$
$$x_{3} = -98.9601685880785$$
$$x_{4} = 67.5442420521806$$
$$x_{5} = 76.9690200129499$$
$$x_{6} = 36.1283155162826$$
$$x_{7} = 58.1194640914112$$
$$x_{8} = 14.1371669411541$$
$$x_{9} = -29.845130209103$$
$$x_{10} = 61.261056745001$$
$$x_{11} = -36.1283155162826$$
$$x_{12} = -4.71238898038469$$
$$x_{13} = -39.2699081698724$$
$$x_{14} = 1.5707963267949$$
$$x_{15} = -168.075206967054$$
$$x_{16} = -14.1371669411541$$
$$x_{17} = -64.4026493985908$$
$$x_{18} = -67.5442420521806$$
$$x_{19} = 92.6769832808989$$
$$x_{20} = -51.8362787842316$$
$$x_{21} = -86.3937979737193$$
$$x_{22} = 42.4115008234622$$
$$x_{23} = -17.2787595947439$$
$$x_{24} = -45.553093477052$$
$$x_{25} = -89.5353906273091$$
$$x_{26} = -1.5707963267949$$
$$x_{27} = 39.2699081698724$$
$$x_{28} = 23.5619449019235$$
$$x_{29} = 7.85398163397448$$
$$x_{30} = -58.1194640914112$$
$$x_{31} = -61.261056745001$$
$$x_{32} = -73.8274273593601$$
$$x_{33} = 73.8274273593601$$
$$x_{34} = 29.845130209103$$
$$x_{35} = 4.71238898038469$$
$$x_{36} = 86.3937979737193$$
$$x_{37} = 64.4026493985908$$
$$x_{38} = 89.5353906273091$$
$$x_{39} = -20.4203522483337$$
$$x_{40} = -387.986692718339$$
$$x_{41} = -26.7035375555132$$
$$x_{42} = 98.9601685880785$$
$$x_{43} = 51.8362787842316$$
$$x_{44} = 83.2522053201295$$
$$x_{45} = -48.6946861306418$$
$$x_{46} = -54.9778714378214$$
$$x_{47} = 70.6858347057703$$
$$x_{48} = -95.8185759344887$$
$$x_{49} = 26.7035375555132$$
$$x_{50} = 80.1106126665397$$
$$x_{51} = -23.5619449019235$$
$$x_{52} = -7.85398163397448$$
$$x_{53} = -83.2522053201295$$
$$x_{54} = -76.9690200129499$$
$$x_{55} = -42.4115008234622$$
$$x_{56} = -32.9867228626928$$
$$x_{57} = 17.2787595947439$$
$$x_{58} = 32.9867228626928$$
$$x_{59} = 20.4203522483337$$
$$x_{60} = -70.6858347057703$$
$$x_{61} = -10.9955742875643$$
$$x_{62} = -92.6769832808989$$
$$x_{63} = 45.553093477052$$
$$x_{64} = 10.9955742875643$$
$$x_{65} = -80.1106126665397$$
$$x_{66} = 95.8185759344887$$
$$x_{67} = -2266.65909956504$$
This roots
$$x_{67} = -2266.65909956504$$
$$x_{40} = -387.986692718339$$
$$x_{15} = -168.075206967054$$
$$x_{3} = -98.9601685880785$$
$$x_{48} = -95.8185759344887$$
$$x_{62} = -92.6769832808989$$
$$x_{25} = -89.5353906273091$$
$$x_{21} = -86.3937979737193$$
$$x_{53} = -83.2522053201295$$
$$x_{65} = -80.1106126665397$$
$$x_{54} = -76.9690200129499$$
$$x_{32} = -73.8274273593601$$
$$x_{60} = -70.6858347057703$$
$$x_{18} = -67.5442420521806$$
$$x_{17} = -64.4026493985908$$
$$x_{31} = -61.261056745001$$
$$x_{30} = -58.1194640914112$$
$$x_{46} = -54.9778714378214$$
$$x_{20} = -51.8362787842316$$
$$x_{45} = -48.6946861306418$$
$$x_{24} = -45.553093477052$$
$$x_{55} = -42.4115008234622$$
$$x_{13} = -39.2699081698724$$
$$x_{11} = -36.1283155162826$$
$$x_{56} = -32.9867228626928$$
$$x_{9} = -29.845130209103$$
$$x_{41} = -26.7035375555132$$
$$x_{51} = -23.5619449019235$$
$$x_{39} = -20.4203522483337$$
$$x_{23} = -17.2787595947439$$
$$x_{16} = -14.1371669411541$$
$$x_{61} = -10.9955742875643$$
$$x_{52} = -7.85398163397448$$
$$x_{12} = -4.71238898038469$$
$$x_{26} = -1.5707963267949$$
$$x_{14} = 1.5707963267949$$
$$x_{35} = 4.71238898038469$$
$$x_{29} = 7.85398163397448$$
$$x_{64} = 10.9955742875643$$
$$x_{8} = 14.1371669411541$$
$$x_{57} = 17.2787595947439$$
$$x_{59} = 20.4203522483337$$
$$x_{28} = 23.5619449019235$$
$$x_{49} = 26.7035375555132$$
$$x_{34} = 29.845130209103$$
$$x_{58} = 32.9867228626928$$
$$x_{6} = 36.1283155162826$$
$$x_{27} = 39.2699081698724$$
$$x_{22} = 42.4115008234622$$
$$x_{63} = 45.553093477052$$
$$x_{1} = 48.6946861306418$$
$$x_{43} = 51.8362787842316$$
$$x_{2} = 54.9778714378214$$
$$x_{7} = 58.1194640914112$$
$$x_{10} = 61.261056745001$$
$$x_{37} = 64.4026493985908$$
$$x_{4} = 67.5442420521806$$
$$x_{47} = 70.6858347057703$$
$$x_{33} = 73.8274273593601$$
$$x_{5} = 76.9690200129499$$
$$x_{50} = 80.1106126665397$$
$$x_{44} = 83.2522053201295$$
$$x_{36} = 86.3937979737193$$
$$x_{38} = 89.5353906273091$$
$$x_{19} = 92.6769832808989$$
$$x_{66} = 95.8185759344887$$
$$x_{42} = 98.9601685880785$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{67}$$
For example, let's take the point
$$x_{0} = x_{67} - \frac{1}{10}$$
=
$$-2266.65909956504 + - \frac{1}{10}$$
=
$$-2266.75909956504$$
substitute to the expression
$$\cos{\left(t \right)} \leq 0$$
$$\cos{\left(t \right)} \leq 0$$
cos(t) <= 0

Then
$$x \leq -2266.65909956504$$
no execute
one of the solutions of our inequality is:
$$x \geq -2266.65909956504 \wedge x \leq -387.986692718339$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       x67      x40      x15      x3      x48      x62      x25      x21      x53      x65      x54      x32      x60      x18      x17      x31      x30      x46      x20      x45      x24      x55      x13      x11      x56      x9      x41      x51      x39      x23      x16      x61      x52      x12      x26      x14      x35      x29      x64      x8      x57      x59      x28      x49      x34      x58      x6      x27      x22      x63      x1      x43      x2      x7      x10      x37      x4      x47      x33      x5      x50      x44      x36      x38      x19      x66      x42

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq -2266.65909956504 \wedge x \leq -387.986692718339$$
$$x \geq -168.075206967054 \wedge x \leq -98.9601685880785$$
$$x \geq -95.8185759344887 \wedge x \leq -92.6769832808989$$
$$x \geq -89.5353906273091 \wedge x \leq -86.3937979737193$$
$$x \geq -83.2522053201295 \wedge x \leq -80.1106126665397$$
$$x \geq -76.9690200129499 \wedge x \leq -73.8274273593601$$
$$x \geq -70.6858347057703 \wedge x \leq -67.5442420521806$$
$$x \geq -64.4026493985908 \wedge x \leq -61.261056745001$$
$$x \geq -58.1194640914112 \wedge x \leq -54.9778714378214$$
$$x \geq -51.8362787842316 \wedge x \leq -48.6946861306418$$
$$x \geq -45.553093477052 \wedge x \leq -42.4115008234622$$
$$x \geq -39.2699081698724 \wedge x \leq -36.1283155162826$$
$$x \geq -32.9867228626928 \wedge x \leq -29.845130209103$$
$$x \geq -26.7035375555132 \wedge x \leq -23.5619449019235$$
$$x \geq -20.4203522483337 \wedge x \leq -17.2787595947439$$
$$x \geq -14.1371669411541 \wedge x \leq -10.9955742875643$$
$$x \geq -7.85398163397448 \wedge x \leq -4.71238898038469$$
$$x \geq -1.5707963267949 \wedge x \leq 1.5707963267949$$
$$x \geq 4.71238898038469 \wedge x \leq 7.85398163397448$$
$$x \geq 10.9955742875643 \wedge x \leq 14.1371669411541$$
$$x \geq 17.2787595947439 \wedge x \leq 20.4203522483337$$
$$x \geq 23.5619449019235 \wedge x \leq 26.7035375555132$$
$$x \geq 29.845130209103 \wedge x \leq 32.9867228626928$$
$$x \geq 36.1283155162826 \wedge x \leq 39.2699081698724$$
$$x \geq 42.4115008234622 \wedge x \leq 45.553093477052$$
$$x \geq 48.6946861306418 \wedge x \leq 51.8362787842316$$
$$x \geq 54.9778714378214 \wedge x \leq 58.1194640914112$$
$$x \geq 61.261056745001 \wedge x \leq 64.4026493985908$$
$$x \geq 67.5442420521806 \wedge x \leq 70.6858347057703$$
$$x \geq 73.8274273593601 \wedge x \leq 76.9690200129499$$
$$x \geq 80.1106126665397 \wedge x \leq 83.2522053201295$$
$$x \geq 86.3937979737193 \wedge x \leq 89.5353906273091$$
$$x \geq 92.6769832808989 \wedge x \leq 95.8185759344887$$
$$x \geq 98.9601685880785$$
Rapid solution [src]
   /pi            3*pi\
And|-- <= t, t <= ----|
   \2              2  /
$$\frac{\pi}{2} \leq t \wedge t \leq \frac{3 \pi}{2}$$
(pi/2 <= t)∧(t <= 3*pi/2)
Rapid solution 2 [src]
 pi  3*pi 
[--, ----]
 2    2   
$$x\ in\ \left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$$
x in Interval(pi/2, 3*pi/2)