Mister Exam

Other calculators

log(1/3)x≤−1. inequation

A inequation with variable

The solution

You have entered [src]
log(1/3)*x <= -1
xlog(13)1x \log{\left(\frac{1}{3} \right)} \leq -1
x*log(1/3) <= -1
Detail solution
Given the inequality:
xlog(13)1x \log{\left(\frac{1}{3} \right)} \leq -1
To solve this inequality, we must first solve the corresponding equation:
xlog(13)=1x \log{\left(\frac{1}{3} \right)} = -1
Solve:
Given the linear equation:
log(1/3)*x = -1

Expand brackets in the left part
log1/3x = -1

Divide both parts of the equation by -log(3)
x = -1 / (-log(3))

x1=1log(3)x_{1} = \frac{1}{\log{\left(3 \right)}}
x1=1log(3)x_{1} = \frac{1}{\log{\left(3 \right)}}
This roots
x1=1log(3)x_{1} = \frac{1}{\log{\left(3 \right)}}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+1log(3)- \frac{1}{10} + \frac{1}{\log{\left(3 \right)}}
=
110+1log(3)- \frac{1}{10} + \frac{1}{\log{\left(3 \right)}}
substitute to the expression
xlog(13)1x \log{\left(\frac{1}{3} \right)} \leq -1
(110+1log(3))log(13)1\left(- \frac{1}{10} + \frac{1}{\log{\left(3 \right)}}\right) \log{\left(\frac{1}{3} \right)} \leq -1
 /  1      1   \             
-|- -- + ------|*log(3) <= -1
 \  10   log(3)/             

but
 /  1      1   \             
-|- -- + ------|*log(3) >= -1
 \  10   log(3)/             

Then
x1log(3)x \leq \frac{1}{\log{\left(3 \right)}}
no execute
the solution of our inequality is:
x1log(3)x \geq \frac{1}{\log{\left(3 \right)}}
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.05-5
Rapid solution 2 [src]
   1        
[------, oo)
 log(3)     
x in [1log(3),)x\ in\ \left[\frac{1}{\log{\left(3 \right)}}, \infty\right)
x in Interval(1/log(3), oo)
Rapid solution [src]
   /  1                \
And|------ <= x, x < oo|
   \log(3)             /
1log(3)xx<\frac{1}{\log{\left(3 \right)}} \leq x \wedge x < \infty
(x < oo)∧(1/log(3) <= x)