Mister Exam

Other calculators

cos(6x)<-1/2 inequation

A inequation with variable

The solution

You have entered [src]
cos(6*x) < -1/2
$$\cos{\left(6 x \right)} < - \frac{1}{2}$$
cos(6*x) < -1/2
Detail solution
Given the inequality:
$$\cos{\left(6 x \right)} < - \frac{1}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(6 x \right)} = - \frac{1}{2}$$
Solve:
Given the equation
$$\cos{\left(6 x \right)} = - \frac{1}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$6 x = \pi n + \operatorname{acos}{\left(- \frac{1}{2} \right)}$$
$$6 x = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{2} \right)}$$
Or
$$6 x = \pi n + \frac{2 \pi}{3}$$
$$6 x = \pi n - \frac{\pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$6$$
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
This roots
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{6} + \frac{\pi}{9}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{6} - \frac{1}{10} + \frac{\pi}{9}$$
substitute to the expression
$$\cos{\left(6 x \right)} < - \frac{1}{2}$$
$$\cos{\left(6 \left(\frac{\pi n}{6} - \frac{1}{10} + \frac{\pi}{9}\right) \right)} < - \frac{1}{2}$$
    /  3   pi       \       
-sin|- - + -- + pi*n| < -1/2
    \  5   6        /       

but
    /  3   pi       \       
-sin|- - + -- + pi*n| > -1/2
    \  5   6        /       

Then
$$x < \frac{\pi n}{6} + \frac{\pi}{9}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{\pi n}{6} + \frac{\pi}{9} \wedge x < \frac{\pi n}{6} - \frac{\pi}{18}$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
   /       /      /   /2*pi\\                                     \     /      /   /pi\\                                 \    \
   |       |      |sin|----||      /    _________________________\|     |      |sin|--||      /    _____________________\|    |
   |       |      |   \ 9  /|      |   /    2/2*pi\      2/2*pi\ ||     |      |   \9 /|      |   /    2/pi\      2/pi\ ||    |
And|x < -I*|I*atan|---------| + log|  /  cos |----| + sin |----| ||, -I*|I*atan|-------| + log|  /  cos |--| + sin |--| || < x|
   |       |      |   /2*pi\|      \\/       \ 9  /       \ 9  / /|     |      |   /pi\|      \\/       \9 /       \9 / /|    |
   |       |      |cos|----||                                     |     |      |cos|--||                                 |    |
   \       \      \   \ 9  //                                     /     \      \   \9 //                                 /    /
$$x < - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{2 \pi}{9} \right)} + \cos^{2}{\left(\frac{2 \pi}{9} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sin{\left(\frac{2 \pi}{9} \right)}}{\cos{\left(\frac{2 \pi}{9} \right)}} \right)}\right) \wedge - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{\pi}{9} \right)} + \cos^{2}{\left(\frac{\pi}{9} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sin{\left(\frac{\pi}{9} \right)}}{\cos{\left(\frac{\pi}{9} \right)}} \right)}\right) < x$$
(x < -i*(i*atan(sin(2*pi/9)/cos(2*pi/9)) + log(sqrt(cos(2*pi/9)^2 + sin(2*pi/9)^2))))∧(-i*(i*atan(sin(pi/9)/cos(pi/9)) + log(sqrt(cos(pi/9)^2 + sin(pi/9)^2))) < x)