Mister Exam

Other calculators

cos6x≥-1/2 inequation

A inequation with variable

The solution

You have entered [src]
cos(6*x) >= -1/2
$$\cos{\left(6 x \right)} \geq - \frac{1}{2}$$
cos(6*x) >= -1/2
Detail solution
Given the inequality:
$$\cos{\left(6 x \right)} \geq - \frac{1}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(6 x \right)} = - \frac{1}{2}$$
Solve:
Given the equation
$$\cos{\left(6 x \right)} = - \frac{1}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$6 x = \pi n + \operatorname{acos}{\left(- \frac{1}{2} \right)}$$
$$6 x = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{2} \right)}$$
Or
$$6 x = \pi n + \frac{2 \pi}{3}$$
$$6 x = \pi n - \frac{\pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$6$$
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
This roots
$$x_{1} = \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x_{2} = \frac{\pi n}{6} - \frac{\pi}{18}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{6} + \frac{\pi}{9}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{6} - \frac{1}{10} + \frac{\pi}{9}$$
substitute to the expression
$$\cos{\left(6 x \right)} \geq - \frac{1}{2}$$
$$\cos{\left(6 \left(\frac{\pi n}{6} - \frac{1}{10} + \frac{\pi}{9}\right) \right)} \geq - \frac{1}{2}$$
    /  3   pi       \        
-sin|- - + -- + pi*n| >= -1/2
    \  5   6        /        

one of the solutions of our inequality is:
$$x \leq \frac{\pi n}{6} + \frac{\pi}{9}$$
 _____           _____          
      \         /
-------•-------•-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq \frac{\pi n}{6} + \frac{\pi}{9}$$
$$x \geq \frac{\pi n}{6} - \frac{\pi}{18}$$
Solving inequality on a graph
Rapid solution [src]
  /   /                /      /   /pi\\                                 \\     /            /      /   /2*pi\\                                     \     \\
  |   |                |      |sin|--||      /    _____________________\||     |            |      |sin|----||      /    _________________________\|     ||
  |   |                |      |   \9 /|      |   /    2/pi\      2/pi\ |||     |     pi     |      |   \ 9  /|      |   /    2/2*pi\      2/2*pi\ ||     ||
Or|And|0 <= x, x <= -I*|I*atan|-------| + log|  /  cos |--| + sin |--| |||, And|x <= --, -I*|I*atan|---------| + log|  /  cos |----| + sin |----| || <= x||
  |   |                |      |   /pi\|      \\/       \9 /       \9 / /||     |     3      |      |   /2*pi\|      \\/       \ 9  /       \ 9  / /|     ||
  |   |                |      |cos|--||                                 ||     |            |      |cos|----||                                     |     ||
  \   \                \      \   \9 //                                 //     \            \      \   \ 9  //                                     /     //
$$\left(0 \leq x \wedge x \leq - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{\pi}{9} \right)} + \cos^{2}{\left(\frac{\pi}{9} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sin{\left(\frac{\pi}{9} \right)}}{\cos{\left(\frac{\pi}{9} \right)}} \right)}\right)\right) \vee \left(x \leq \frac{\pi}{3} \wedge - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{2 \pi}{9} \right)} + \cos^{2}{\left(\frac{2 \pi}{9} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sin{\left(\frac{2 \pi}{9} \right)}}{\cos{\left(\frac{2 \pi}{9} \right)}} \right)}\right) \leq x\right)$$
((0 <= x)∧(x <= -i*(i*atan(sin(pi/9)/cos(pi/9)) + log(sqrt(cos(pi/9)^2 + sin(pi/9)^2)))))∨((x <= pi/3)∧(-i*(i*atan(sin(2*pi/9)/cos(2*pi/9)) + log(sqrt(cos(2*pi/9)^2 + sin(2*pi/9)^2))) <= x))