/x\ sin|-| = cos(x*y) \y/
x^2*sin(y) + x*y - 1 = 0
x^2 + x*y^2 = 1
x^y = y^x
(x^2 + y^2)^2 - 7*(x^2 - y^2)
arctg(x/y) = x*y
x^4 + y^4 = x^2 + y^2
x^4*y^3*z^2 + y^4*x^3*z = x^2*z^4 + y^2
y^2 = x^3 + 1
y^2 = x^3 + 5
y^2 = x^3 + 8
y^2 = x^3 + 12
(x^2 + y^2)^2 + 18*(x^2 + y^2) = 8*x^3 - 24*y^2*x + 27
(x^2 + y^2 - 2*x)^2 = x^2 + y^2
(x^2 + y^2 - 2*x)^2 = x^2 + y^2 + 1
(x^2 + y^2 - 2*x)^2 = x^2 + y^2 - 1
(x^2 + y^2 - 2*x)^2 = x^2 + y^2 + 1/20
(x^2 + y^2 - 3*x)^2 = 1/2
(x^2 + y^2)^2 - 2*(x^2 - y^2) + 1 = (3 / 5)^4
(x^2 + y^2)^2 - 2*(x^2 - y^2) + 1 = (4 / 5)^4
(x^2 + y^2)^2 - 2*(x^2 - y^2) = 0
(x^2 + y^2)^2 - 2*(x^2 - y^2) + 1 = (6 / 5)^4
(x^2 + y^2)^2 - 2*(x^2 - y^2) + 1 = (7 / 5)^4
(x^2 + y^2)^2 - 2*(x^2 - y^2) + 1 = (8 / 5)^4
x*(x^2 + y^2) + 2/7*y^2 = 0
(x^2 + y^2)*x = 2*y^2 / 3
(x - 1)*(x^2 + y^2) = x^2
2*y^2*(x^2 + y^2) - 10*y^2*(x + y) - 2*y^2 - 9*x^2 + 90*(x + y) - 144 = 0
2*x*(x^2 + y^2) = (3*x^2 - y^2) / 2
x^2*y^2 - 9*x^2 - 4*y^2 = 0
(y^2 - x^2)*(x - 1)*(2*x - 3) = 4*(x^2 + y^2 - 2*x)
x^4 + x^2*y^2 + y^4 = x*(x^2 + y^2)
(x^2 - 1)*(x - 1)^2 + (y^2 - 1)^2 = 0
x^4 = x^2*y - y^3
(x^2 + y^2 - 6)^2 = 16*(x^2 + 1)
y^2 - x^2*(x + 1) = 0
y^2 = x*(81*x^5 + 396*x^4 + 738*x^3 + 660*x^2 + 269*x + 48)
y^2 * (1 - x^2) = (x^2 + 2*y - 1)^2
(x^2 + y^2)^2 = 3*x^2*y
144*(x^4 + y^4) - 225*(x^2 + y^2) + 350*x^2*y^2 + 81 = 0
y^2 - 4*x^2 = x^2*y^2
y^2 - 4*x^3 = 0
x^2*y + 4*y - 6*x = 0
x^3 + y^3 - 6*x*y = 0
x*y + x^3 + x^2 + x = 1
x^3 = 9*(x^2 - 3*y^2)
y = 8 / (x^2 + 4)
y^2*(y^2 - 4) = x^2 * (x^2 - 9)
(x^2 + y^2)^2 = 2*x^2 + y^2
x^4 = 4*(x^2 + y^2)
x^2*(x^2 + y^2) = 4*y^2
x^4 - x^2 + y^2 = 0
(x^2 + y^2)^2 = a^2*(x^2 - y^2)
(x^2 + y^2 - 3*x)^2 = 4*(x^2 + y^2)
(x^2 + y^2)^2 + 8*x*(x^2 + y^2) - 16*y^2 = 0
4*(x^2 + y^2) = (x^2 + y^2 - 4*x)^2
x^4 + y^4 = 1
(x^2 + y^2)*(y^2 + x*(x + 1)) = 4*x*y^2
x^(2/3) + y^(2/3) = 1
x^4 * (x^2 + y^2) - (2*x^2 - 3)^2 = 0
(x^2 + y^2 - 4)^3 = 108*y^2
(x^2 + y^2)^3 = 4 * (x^2 - y^2)^2
y^2 = x^3 + 2*x + 5
y^2 = x^5 - x
x^6 + y^6 = x^2
(x^2 + y^2)^2 = 2*(x^2 - y^2)
x^(1/2) + y^(1/2) = 1
x^(3/2) + y^(3/2) = 1
y^2 = x^5 - 2*x^4 - 7*x^3 + 8*x^2
(x^2 + y^2)*atan(y/x) = 2*y
x = 2*acos(1 - y/2) - sqrt(y*(2*2 - y))
x = 1/4*(y^2 - ln(y)^2 - 1)
x = 1/3*(1/y - 1)
sqrt(x^2 + y^2) = 1/2 * atan(y/x) + 3
x/y = cot((x^2 + y^2)/4)
y/x = tan(2/sqrt(x^2 + y^2))
y/x = tan(2/(x^2 + y^2))
x + sqrt(1 - y^2) = ln([1 + sqrt(1 - y^2)]/y)/2
x + sqrt(1 - y^2) = 3*ln([1 + sqrt(1 - y^2)]/y)/2
x = abs(ln([1 + sqrt(1 - y^2)]/y) - sqrt(1 - y^2))
x = 2 - z^2/2
y = abs(z*sqrt(1 - z^2/4))
y = abs(sqrt(x*(2 - x)))
z = abs(sqrt(2*(2 - x)))
x - 1 = abs(sqrt(1 - y^2))
z^2 - 2 = abs(2*sqrt(1 - y^2))
(2*x^2 + y^2)^2 - 2*sqrt(2)*x*(2*x^2 - 3*y^2) + 2*(y^2 - x^2) = 0
x^3 + x*y^2 - x^2 + y^2 = y*(x^2 + y^2 - 2*x)
9x^2+12xy+4y^2-24x-16y+3=0
x^2-2xy+y^2-10x-6y+25=0
5x^2+4xy+y^2-6x-2y+2=0
5*x^2+4*x*y+8*y^2+8*x+14*y+5=0
8063 - 250*y - 10*x + 50*x^2 + 50*y^2
-243 - 216*z - 18*x + 4*y^2 + 25*x^2 + 36*z^2 + 16*x*y = 0
2*x^2+4*y^2+z^2-4*x*y-4*y-2*z+5=0
x^2+y^2-z^2-2*x-2*y+2*z+2=0
x^2+y^2-6*x+6*y-4*z+18=0
x^2+4*y^2+9*z^2+4*x*y+12*y*z+6*x*z-4*x-8*y-12*z+3=0
Learn more about Implicit function
The above examples also contain:
The following operations can be performed