Mister Exam

Other calculators

4x^2-12xy+13y^2-36x+62y+69=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
               2       2                    
69 - 36*x + 4*x  + 13*y  + 62*y - 12*x*y = 0
$$4 x^{2} - 12 x y - 36 x + 13 y^{2} + 62 y + 69 = 0$$
4*x^2 - 12*x*y - 36*x + 13*y^2 + 62*y + 69 = 0
Detail solution
Given line equation of 2-order:
$$4 x^{2} - 12 x y - 36 x + 13 y^{2} + 62 y + 69 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = -6$$
$$a_{13} = -18$$
$$a_{22} = 13$$
$$a_{23} = 31$$
$$a_{33} = 69$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}4 & -6\\-6 & 13\end{matrix}\right|$$
$$\Delta = 16$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$4 x_{0} - 6 y_{0} - 18 = 0$$
$$- 6 x_{0} + 13 y_{0} + 31 = 0$$
then
$$x_{0} = 3$$
$$y_{0} = -1$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = - 18 x_{0} + 31 y_{0} + 69$$
$$a'_{33} = -16$$
then equation turns into
$$4 x'^{2} - 12 x' y' + 13 y'^{2} - 16 = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{3}{4}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{3}{4} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{4}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{3}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{2 \sqrt{5}}{5}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{5}}{5}$$
substitute coefficients
$$x' = \frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}$$
$$y' = \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}$$
then the equation turns from
$$4 x'^{2} - 12 x' y' + 13 y'^{2} - 16 = 0$$
to
$$13 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right)^{2} - 12 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right) \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right) + 4 \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right)^{2} - 16 = 0$$
simplify
$$\tilde x^{2} + 16 \tilde y^{2} - 16 = 0$$
Given equation is ellipse
        2           2    
\tilde x    \tilde y     
--------- + --------- = 1
      2             2    
  / 1\       /  1  \     
  \4 /       |-----|     
             \4*1/4/     

- reduced to canonical form
The center of canonical coordinate system at point O
(3, -1)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{2 \sqrt{5}}{5}, \ \frac{\sqrt{5}}{5}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{5}}{5}, \ \frac{2 \sqrt{5}}{5}\right)$$
Invariants method
Given line equation of 2-order:
$$4 x^{2} - 12 x y - 36 x + 13 y^{2} + 62 y + 69 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = -6$$
$$a_{13} = -18$$
$$a_{22} = 13$$
$$a_{23} = 31$$
$$a_{33} = 69$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 17$$
     |4   -6|
I2 = |      |
     |-6  13|

$$I_{3} = \left|\begin{matrix}4 & -6 & -18\\-6 & 13 & 31\\-18 & 31 & 69\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}4 - \lambda & -6\\-6 & 13 - \lambda\end{matrix}\right|$$
     | 4   -18|   |13  31|
K2 = |        | + |      |
     |-18  69 |   |31  69|

$$I_{1} = 17$$
$$I_{2} = 16$$
$$I_{3} = -256$$
$$I{\left(\lambda \right)} = \lambda^{2} - 17 \lambda + 16$$
$$K_{2} = -112$$
Because
$$I_{2} > 0 \wedge I_{1} I_{3} < 0$$
then by line type:
this equation is of type : ellipse
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} - 17 \lambda + 16 = 0$$
$$\lambda_{1} = 16$$
$$\lambda_{2} = 1$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$16 \tilde x^{2} + \tilde y^{2} - 16 = 0$$
        2           2    
\tilde x    \tilde y     
--------- + --------- = 1
        2         2      
 /  1  \      / 1\       
 |-----|      \4 /       
 \4*1/4/                 

- reduced to canonical form