Mister Exam

Limit of the function sin(x/y)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /x\
 lim sin|-|
y->oo   \y/
$$\lim_{y \to \infty} \sin{\left(\frac{x}{y} \right)}$$
Limit(sin(x/y), y, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
0
$$0$$
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty} \sin{\left(\frac{x}{y} \right)} = 0$$
$$\lim_{y \to 0^-} \sin{\left(\frac{x}{y} \right)} = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}$$
More at y→0 from the left
$$\lim_{y \to 0^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(\tilde{\infty} x \right)}$$
More at y→0 from the right
$$\lim_{y \to 1^-} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}$$
More at y→1 from the left
$$\lim_{y \to 1^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}$$
More at y→1 from the right
$$\lim_{y \to -\infty} \sin{\left(\frac{x}{y} \right)} = 0$$
More at y→-oo