Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((3+x)^2+(3-x)^2)/((3-x)^2-(3+x)^2)
Limit of (-2+x^2-x)/(-2+x)
Limit of (1+n)/(2+n)
Limit of (1-7/x)^x
sin(x/y)
Identical expressions
sin(x/y)
sinus of (x divide by y)
sinx/y
sin(x divide by y)
Limit of the function
/
sin(x/y)
Limit of the function sin(x/y)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x\ lim sin|-| y->oo \y/
lim
y
→
∞
sin
(
x
y
)
\lim_{y \to \infty} \sin{\left(\frac{x}{y} \right)}
y
→
∞
lim
sin
(
y
x
)
Limit(sin(x/y), y, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits y→0, -oo, +oo, 1
lim
y
→
∞
sin
(
x
y
)
=
0
\lim_{y \to \infty} \sin{\left(\frac{x}{y} \right)} = 0
y
→
∞
lim
sin
(
y
x
)
=
0
lim
y
→
0
−
sin
(
x
y
)
=
∞
~
x
cos
(
∞
~
x
)
\lim_{y \to 0^-} \sin{\left(\frac{x}{y} \right)} = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
y
→
0
−
lim
sin
(
y
x
)
=
∞
~
x
cos
(
∞
~
x
)
More at y→0 from the left
lim
y
→
0
+
sin
(
x
y
)
=
sin
(
∞
~
x
)
\lim_{y \to 0^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(\tilde{\infty} x \right)}
y
→
0
+
lim
sin
(
y
x
)
=
sin
(
∞
~
x
)
More at y→0 from the right
lim
y
→
1
−
sin
(
x
y
)
=
sin
(
x
)
\lim_{y \to 1^-} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}
y
→
1
−
lim
sin
(
y
x
)
=
sin
(
x
)
More at y→1 from the left
lim
y
→
1
+
sin
(
x
y
)
=
sin
(
x
)
\lim_{y \to 1^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}
y
→
1
+
lim
sin
(
y
x
)
=
sin
(
x
)
More at y→1 from the right
lim
y
→
−
∞
sin
(
x
y
)
=
0
\lim_{y \to -\infty} \sin{\left(\frac{x}{y} \right)} = 0
y
→
−
∞
lim
sin
(
y
x
)
=
0
More at y→-oo