$$\lim_{y \to \infty} \sin{\left(\frac{x}{y} \right)} = 0$$
$$\lim_{y \to 0^-} \sin{\left(\frac{x}{y} \right)} = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}$$
More at y→0 from the left$$\lim_{y \to 0^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(\tilde{\infty} x \right)}$$
More at y→0 from the right$$\lim_{y \to 1^-} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}$$
More at y→1 from the left$$\lim_{y \to 1^+} \sin{\left(\frac{x}{y} \right)} = \sin{\left(x \right)}$$
More at y→1 from the right$$\lim_{y \to -\infty} \sin{\left(\frac{x}{y} \right)} = 0$$
More at y→-oo