Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{x} \left(x^{2} - 1\right) = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = -1$$
$$x_{2} = 1$$
Numerical solution$$x_{1} = -71.6025932625681$$
$$x_{2} = -73.577910111863$$
$$x_{3} = -46.2180873563251$$
$$x_{4} = -79.5129914542486$$
$$x_{5} = -53.93969182993$$
$$x_{6} = -40.549966844823$$
$$x_{7} = -119.269715394308$$
$$x_{8} = -61.7576880804052$$
$$x_{9} = -35.1157134585577$$
$$x_{10} = -85.4590521969804$$
$$x_{11} = -65.6883070820612$$
$$x_{12} = -42.4219620932819$$
$$x_{13} = -44.3126397955156$$
$$x_{14} = -107.320766981846$$
$$x_{15} = -55.8874330100957$$
$$x_{16} = -50.0625314136456$$
$$x_{17} = -57.8401098081453$$
$$x_{18} = 1$$
$$x_{19} = -111.302350381263$$
$$x_{20} = -81.4939382270426$$
$$x_{21} = -105.330580740598$$
$$x_{22} = -117.277400270678$$
$$x_{23} = -67.6575690448132$$
$$x_{24} = -103.34083441056$$
$$x_{25} = -95.3869000709892$$
$$x_{26} = -77.5332552098772$$
$$x_{27} = -89.4278853676496$$
$$x_{28} = -99.3627857033581$$
$$x_{29} = -109.311365356229$$
$$x_{30} = -69.6290775076557$$
$$x_{31} = -113.293698637214$$
$$x_{32} = -83.4759897300653$$
$$x_{33} = -38.7021606131911$$
$$x_{34} = -1$$
$$x_{35} = -101.351558330607$$
$$x_{36} = -48.1354367467417$$
$$x_{37} = -115.285388562094$$
$$x_{38} = -87.4430422232197$$
$$x_{39} = -36.8866033872636$$
$$x_{40} = -121.262316938766$$
$$x_{41} = -97.3745529423273$$
$$x_{42} = -91.4135149755732$$
$$x_{43} = -93.3998711831007$$
$$x_{44} = -75.5548493298981$$
$$x_{45} = -51.9977149340079$$
$$x_{46} = -59.7970469090044$$
$$x_{47} = -63.7215707857911$$