In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivativex+1−sin2(x)+cos2(x)−(x+1)2sin(x)cos(x)=0Solve this equationThe roots of this equation
x1=−80.8928816808707x2=−99.7430349489701x3=−63.6132585554971x4=−47.9039581285518x5=−98.172197695036x6=84.0346635398793x7=46.3332101330021x8=38.478177732588x9=19.6228339741551x10=82.4638118824473x11=16.4790625040945x12=41.6202371710741x13=−46.33297711484x14=66.7551541995631x15=−57.3296278828154x16=62.0424894121024x17=33.7649303669424x18=8.61339783522102x19=−5.44173882723211x20=18.0510381254578x21=−33.76449140679x22=−62.042359483332x23=98.1722495795572x24=32.1937937404494x25=55.7588651168628x26=−25.9081038458568x27=24.3374775388136x28=−82.4637383451864x29=2.28057021563236x30=−60.471454983256x31=85.6055131901373x32=74.6095191089778x33=40.049216384194x34=−27.4794955733025x35=−11.7577501031099x36=187.70883626286x37=25.9088498373569x38=27.4801585795776x39=−13.3315066037056x40=63.6133821448946x41=99.743085211956x42=44.762232510841x43=−19.6215319912886x44=−3.83985112537054x45=60.4715917520353x46=−16.4772142695041x47=11.7613921271159x48=−49.4749271716005x49=0.637196330969125x50=30.6226232987428x51=−38.4778397936073x52=68.3260341292281x53=−79.322022596248x54=−90.317989831739x55=−41.6199483594113x56=−84.0345927265613x57=−85.6054449521595x58=88.7472068907202x59=76.1803827297937x60=−69.8968079909424x61=22.7660290738215x62=96.6014126819581x63=54.1879434234347x64=−93.4596775892801x65=−54.1877730844831x66=3.87589679173726x67=−68.3259270041136x68=91.8888937560759x69=69.8969103540797x70=10.1878453044909x71=−10.1829786980484x72=−40.0489044548563x73=−77.7511609427056x74=−71.4676852032561x75=−18.0494987719381x76=52.6170143837707x77=90.3180511337085x78=−24.3366319328506x79=−76.1802965592094x80=47.9041761074919x81=−55.7587042438767x82=77.7512436659628x83=−35.3356368025816x84=−44.7619828411789x85=−91.8888345323567x86=−2.15134433588925x87=−32.1933108467876The values of the extrema at the points:
(-80.89288168087066, -0.00625825728073336)
(-99.74303494897006, -0.00506358337322892)
(-63.61325855549712, 0.00798527452696611)
(-47.90395812855178, 0.0106594755120283)
(-98.172197695036, 0.00514543658512232)
(84.03466353987932, -0.00587985341438749)
(46.33321013300211, -0.0105628184636869)
(38.47817773258804, 0.0126642092304746)
(19.622833974155125, 0.0242378477533134)
(82.46381188244735, 0.00599051273937728)
(16.479062504094543, 0.0285939565978739)
(41.620237171074066, 0.011730708921835)
(-46.33297711483998, -0.0110288276247335)
(66.75515419956312, 0.00737931146584952)
(-57.32962788281537, 0.00887597384673406)
(62.04248941210236, -0.00793090944828029)
(33.76493036694237, -0.0143808225713452)
(8.61339783522102, -0.0519405415328574)
(-5.441738827232107, -0.111862019279856)
(18.05103812545779, -0.0262362545191566)
(-33.76449140678997, -0.0152586464362218)
(-62.04235948333203, -0.00819075854569188)
(98.17224957955716, 0.00504166888895891)
(32.19379374044943, 0.0150613482038312)
(55.758865116862815, -0.0088088547861832)
(-25.908103845856804, 0.0200697449426835)
(24.337477538813616, -0.0197297727754678)
(-82.46373834518636, 0.00613758455702892)
(2.2805702156323617, -0.150672544934396)
(-60.471454983255995, 0.00840709765728415)
(85.60551319013732, 0.00577320829852196)
(74.60951910897779, -0.00661277936376119)
(40.04921638419398, -0.0121795970061747)
(-27.479495573302465, -0.0188791695413614)
(-11.757750103109899, -0.0464279997867718)
(187.70883626286036, -0.00264957515947118)
(25.908849837356932, 0.0185780406697524)
(27.480158579577623, -0.0175533771136332)
(-13.331506603705582, 0.0405132573447961)
(63.61338214489455, 0.00773810337143086)
(99.74308521195597, -0.0049630586647441)
(44.762232510840974, 0.0109253882656147)
(-19.621531991288602, 0.0268409633779861)
(-3.8398511253705365, 0.173398481994393)
(60.47159175203532, 0.00813356945441207)
(-16.47721426950408, 0.0322887105600465)
(11.761392127115943, -0.0391506392825053)
(-49.4749271716005, -0.0103140620006304)
(0.637196330969125, 0.292082592805874)
(30.622623298742763, -0.015809488870913)
(-38.47783979360729, 0.0133400300463799)
(68.32603412922812, -0.00721211017589145)
(-79.32202259624798, 0.00638377042868822)
(-90.317989831739, -0.00559788869847007)
(-41.619948359411254, 0.0123082905137621)
(-84.03459272656133, -0.00602147754269582)
(-85.6054449521595, 0.00590968192557079)
(88.74720689072021, 0.00557111756370173)
(76.18038272979369, 0.00647819420500065)
(-69.89680799094245, 0.00725703916120515)
(22.766029073821525, 0.0210337781400242)
(96.60141268195807, -0.00512280944940889)
(54.18794342343466, 0.00905957804504919)
(-93.45967758928009, -0.00540768367597939)
(-54.18777308448308, 0.00940024143486964)
(3.8758967917372615, 0.102010295291554)
(-68.3259270041136, -0.00742635466561701)
(91.88889375607587, 0.00538269685829326)
(69.89691035407965, 0.00705231812713097)
(10.187845304490947, 0.0446467933531117)
(-10.182978698048352, 0.0543680322906561)
(-40.048904454856334, -0.0128034069967485)
(-77.75116094270562, -0.00651442120647222)
(-71.46768520325605, -0.0070952722893795)
(-18.049498771938094, -0.0293137725748063)
(52.61701438377071, -0.00932499256816396)
(90.31805113370845, -0.00547528663879163)
(-24.336631932850587, -0.021420626484021)
(-76.18029655920942, 0.00665053166012875)
(47.90417610749193, 0.0102235414010152)
(-55.7587042438767, -0.0091305878135904)
(77.75124366596276, -0.00634897811440877)
(-35.33563680258161, 0.0145605860581051)
(-44.76198284117895, 0.0114246964043575)
(-91.8888345323567, 0.0055011425426788)
(-2.1513443358892483, -0.398334456870323)
(-32.19331084678758, 0.0160270188053562)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−80.8928816808707x2=−99.7430349489701x3=84.0346635398793x4=46.3332101330021x5=−46.33297711484x6=62.0424894121024x7=33.7649303669424x8=8.61339783522102x9=−5.44173882723211x10=18.0510381254578x11=−33.76449140679x12=−62.042359483332x13=55.7588651168628x14=24.3374775388136x15=2.28057021563236x16=74.6095191089778x17=40.049216384194x18=−27.4794955733025x19=−11.7577501031099x20=187.70883626286x21=27.4801585795776x22=99.743085211956x23=11.7613921271159x24=−49.4749271716005x25=30.6226232987428x26=68.3260341292281x27=−90.317989831739x28=−84.0345927265613x29=96.6014126819581x30=−93.4596775892801x31=−68.3259270041136x32=−40.0489044548563x33=−77.7511609427056x34=−71.4676852032561x35=−18.0494987719381x36=52.6170143837707x37=90.3180511337085x38=−24.3366319328506x39=−55.7587042438767x40=77.7512436659628x41=−2.15134433588925Maxima of the function at points:
x41=−63.6132585554971x41=−47.9039581285518x41=−98.172197695036x41=38.478177732588x41=19.6228339741551x41=82.4638118824473x41=16.4790625040945x41=41.6202371710741x41=66.7551541995631x41=−57.3296278828154x41=98.1722495795572x41=32.1937937404494x41=−25.9081038458568x41=−82.4637383451864x41=−60.471454983256x41=85.6055131901373x41=25.9088498373569x41=−13.3315066037056x41=63.6133821448946x41=44.762232510841x41=−19.6215319912886x41=−3.83985112537054x41=60.4715917520353x41=−16.4772142695041x41=0.637196330969125x41=−38.4778397936073x41=−79.322022596248x41=−41.6199483594113x41=−85.6054449521595x41=88.7472068907202x41=76.1803827297937x41=−69.8968079909424x41=22.7660290738215x41=54.1879434234347x41=−54.1877730844831x41=3.87589679173726x41=91.8888937560759x41=69.8969103540797x41=10.1878453044909x41=−10.1829786980484x41=−76.1802965592094x41=47.9041761074919x41=−35.3356368025816x41=−44.7619828411789x41=−91.8888345323567x41=−32.1933108467876Decreasing at intervals
[187.70883626286,∞)Increasing at intervals
(−∞,−99.7430349489701]