In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivative2xsin(x)cos(x)+sin2(x)=0Solve this equationThe roots of this equation
x1=65.9734457253857x2=−67.5516436614121x3=−21.9911485751286x4=21.9911485751286x5=−15.707963267949x6=−61.2692172687226x7=80.1168534696549x8=−73.8341991854591x9=1.83659720315213x10=64.410411962776x11=23.5831433102848x12=6.28318530717959x13=29.861872403816x14=−7.91705268466621x15=−83.2582106616487x16=28.2743338823081x17=58.1280655761511x18=−94.2477796076938x19=−306.306916073247x20=−64.410411962776x21=−95.8237937978449x22=−36.1421488970061x23=−80.1168534696549x24=−20.4448034666183x25=70.692907433161x26=−1.83659720315213x27=−53.4070751110265x28=45.5640665961997x29=36.1421488970061x30=73.8341991854591x31=−39.2826357527234x32=59.6902604182061x33=56.5486677646163x34=25.1327412287183x35=26.7222463741877x36=72.2566310325652x37=−50.2654824574367x38=86.3995849739529x39=78.5398163397448x40=51.8459224452234x41=−87.9645943005142x42=37.6991118430775x43=−6.28318530717959x44=−37.6991118430775x45=−43.9822971502571x46=3.14159265358979x47=−58.1280655761511x48=−72.2566310325652x49=−81.6814089933346x50=−42.4232862577008x51=−65.9734457253857x52=0x53=−28.2743338823081x54=43.9822971502571x55=92.682377997352x56=100.530964914873x57=−97.3893722612836x58=81.6814089933346x59=67.5516436614121x60=−75.398223686155x61=−45.5640665961997x62=−51.8459224452234x63=95.8237937978449x64=−4.81584231784594x65=−86.3995849739529x66=94.2477796076938x67=50.2654824574367x68=48.7049516666752x69=−84.8230016469244x70=−59.6902604182061x71=14.1724320747999x72=12.5663706143592x73=−17.3076405374146x74=−89.5409746049841x75=−23.5831433102848x76=278.032748190065x77=89.5409746049841x78=−14.1724320747999x79=34.5575191894877x80=15.707963267949x81=87.9645943005142x82=−29.861872403816x83=7.91705268466621x84=42.4232862577008x85=−9.42477796076938x86=−105.248104538899x87=20.4448034666183x88=−31.4159265358979The values of the extrema at the points:
(65.97344572538566, 1)
(-67.5516436614121, -66.5479429919577)
(-21.991148575128552, 1)
(21.991148575128552, 1)
(-15.707963267948966, 1)
(-61.269217268722585, -60.2651371880071)
(80.11685346965491, 81.1137331491182)
(-73.83419918545908, -72.8308133759219)
(1.8365972031521258, 2.70986852923209)
(64.41041196277601, 65.4065308365988)
(23.583143310284843, 24.5725472811462)
(6.283185307179586, 1)
(29.861872403816044, 30.853502870657)
(-7.917052684666207, -6.88560072412753)
(-83.25821066164869, -82.255208063081)
(28.274333882308138, 1)
(58.12806557615112, 59.1237650459065)
(-94.2477796076938, 1)
(-306.30691607324667, -305.306099900576)
(-64.41041196277601, -63.4065308365988)
(-95.82379379784489, -94.8211849135206)
(-36.142148897006074, -35.135233089007)
(-80.11685346965491, -79.1137331491182)
(-20.4448034666183, -19.4325827297121)
(70.692907433161, 71.6893711873986)
(-1.8365972031521258, -0.709868529232089)
(-53.40707511102649, 1)
(45.56406659619972, 46.5585804770373)
(36.142148897006074, 37.135233089007)
(73.83419918545908, 74.8308133759219)
(-39.282635752723394, -38.2762726485285)
(59.69026041820607, 1)
(56.548667764616276, 1)
(25.132741228718345, 1)
(26.72224637418772, 27.7128941475173)
(72.25663103256524, 1)
(-50.26548245743669, 1)
(86.3995849739529, 87.3966915384367)
(78.53981633974483, 1)
(51.84592244522343, 52.8411009136761)
(-87.96459430051421, 1)
(37.69911184307752, 1)
(-6.283185307179586, 1)
(-37.69911184307752, 1)
(-43.982297150257104, 1)
(3.141592653589793, 1)
(-58.12806557615112, -57.1237650459065)
(-72.25663103256524, 1)
(-81.68140899333463, 1)
(-42.423286257700816, -41.4173940862181)
(-65.97344572538566, 1)
(0, 1)
(-28.274333882308138, 1)
(43.982297150257104, 1)
(92.68237799735202, 93.6796806914592)
(100.53096491487338, 1)
(-97.3893722612836, 1)
(81.68140899333463, 1)
(67.5516436614121, 68.5479429919577)
(-75.39822368615503, 1)
(-45.56406659619972, -44.5585804770373)
(-51.84592244522343, -50.8411009136761)
(95.82379379784489, 96.8211849135206)
(-4.815842317845935, -3.76448393290203)
(-86.3995849739529, -85.3966915384367)
(94.2477796076938, 1)
(50.26548245743669, 1)
(48.70495166667517, 49.6998192592491)
(-84.82300164692441, 1)
(-59.69026041820607, 1)
(14.172432074799941, 15.1548141232633)
(12.566370614359172, 1)
(-17.307640537414635, -16.2932080946897)
(-89.54097460498406, -88.5381826741839)
(-23.583143310284843, -22.5725472811462)
(278.0327481900649, 279.031849018319)
(89.54097460498406, 90.5381826741839)
(-14.172432074799941, -13.1548141232633)
(34.55751918948773, 1)
(15.707963267948966, 1)
(87.96459430051421, 1)
(-29.861872403816044, -28.853502870657)
(7.917052684666207, 8.88560072412753)
(42.423286257700816, 43.4173940862181)
(-9.42477796076938, 1)
(-105.24810453889911, -104.245729252817)
(20.4448034666183, 21.4325827297121)
(-31.41592653589793, 1)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=65.9734457253857x2=−67.5516436614121x3=21.9911485751286x4=−61.2692172687226x5=−73.8341991854591x6=6.28318530717959x7=−7.91705268466621x8=−83.2582106616487x9=28.2743338823081x10=−306.306916073247x11=−64.410411962776x12=−95.8237937978449x13=−36.1421488970061x14=−80.1168534696549x15=−20.4448034666183x16=−1.83659720315213x17=−39.2826357527234x18=59.6902604182061x19=56.5486677646163x20=25.1327412287183x21=72.2566310325652x22=78.5398163397448x23=37.6991118430775x24=3.14159265358979x25=−58.1280655761511x26=−42.4232862577008x27=43.9822971502571x28=100.530964914873x29=81.6814089933346x30=−45.5640665961997x31=−51.8459224452234x32=−4.81584231784594x33=−86.3995849739529x34=94.2477796076938x35=50.2654824574367x36=12.5663706143592x37=−17.3076405374146x38=−89.5409746049841x39=−23.5831433102848x40=−14.1724320747999x41=34.5575191894877x42=15.707963267949x43=87.9645943005142x44=−29.861872403816x45=−105.248104538899Maxima of the function at points:
x45=−21.9911485751286x45=−15.707963267949x45=80.1168534696549x45=1.83659720315213x45=64.410411962776x45=23.5831433102848x45=29.861872403816x45=58.1280655761511x45=−94.2477796076938x45=70.692907433161x45=−53.4070751110265x45=45.5640665961997x45=36.1421488970061x45=73.8341991854591x45=26.7222463741877x45=−50.2654824574367x45=86.3995849739529x45=51.8459224452234x45=−87.9645943005142x45=−6.28318530717959x45=−37.6991118430775x45=−43.9822971502571x45=−72.2566310325652x45=−81.6814089933346x45=−65.9734457253857x45=−28.2743338823081x45=92.682377997352x45=−97.3893722612836x45=67.5516436614121x45=−75.398223686155x45=95.8237937978449x45=48.7049516666752x45=−84.8230016469244x45=−59.6902604182061x45=14.1724320747999x45=278.032748190065x45=89.5409746049841x45=7.91705268466621x45=42.4232862577008x45=−9.42477796076938x45=20.4448034666183x45=−31.4159265358979Decreasing at intervals
[100.530964914873,∞)Increasing at intervals
(−∞,−306.306916073247]