Mister Exam

Other calculators

Derivative of (sin^2)x+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2         
sin (x)*x + 1
xsin2(x)+1x \sin^{2}{\left(x \right)} + 1
sin(x)^2*x + 1
Detail solution
  1. Differentiate xsin2(x)+1x \sin^{2}{\left(x \right)} + 1 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=sin2(x)f{\left(x \right)} = \sin^{2}{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=sin(x)u = \sin{\left(x \right)}.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result of the chain rule is:

        2sin(x)cos(x)2 \sin{\left(x \right)} \cos{\left(x \right)}

      g(x)=xg{\left(x \right)} = x; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      The result is: 2xsin(x)cos(x)+sin2(x)2 x \sin{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)}

    2. The derivative of the constant 11 is zero.

    The result is: 2xsin(x)cos(x)+sin2(x)2 x \sin{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)}

  2. Now simplify:

    xsin(2x)cos(2x)2+12x \sin{\left(2 x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}


The answer is:

xsin(2x)cos(2x)2+12x \sin{\left(2 x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
   2                       
sin (x) + 2*x*cos(x)*sin(x)
2xsin(x)cos(x)+sin2(x)2 x \sin{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)}
The second derivative [src]
  /     2           2                     \
2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/
2(xsin2(x)+xcos2(x)+2sin(x)cos(x))2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right)
The third derivative [src]
  /       2           2                       \
2*\- 3*sin (x) + 3*cos (x) - 4*x*cos(x)*sin(x)/
2(4xsin(x)cos(x)3sin2(x)+3cos2(x))2 \left(- 4 x \sin{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)