Detail solution
-
Differentiate term by term:
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Apply the power rule: goes to
The result is:
-
The derivative of the constant is zero.
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2
sin (x) + 2*x*cos(x)*sin(x)
$$2 x \sin{\left(x \right)} \cos{\left(x \right)} + \sin^{2}{\left(x \right)}$$
The second derivative
[src]
/ 2 2 \
2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/
$$2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 2 \
2*\- 3*sin (x) + 3*cos (x) - 4*x*cos(x)*sin(x)/
$$2 \left(- 4 x \sin{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}\right)$$