Mister Exam

Graphing y = (1-x)/(x+2)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       1 - x
f(x) = -----
       x + 2
f(x)=1xx+2f{\left(x \right)} = \frac{1 - x}{x + 2}
f = (1 - x)/(x + 2)
The graph of the function
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.0-100000100000
The domain of the function
The points at which the function is not precisely defined:
x1=2x_{1} = -2
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
1xx+2=0\frac{1 - x}{x + 2} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=1x_{1} = 1
Numerical solution
x1=1x_{1} = 1
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (1 - x)/(x + 2).
102\frac{1 - 0}{2}
The result:
f(0)=12f{\left(0 \right)} = \frac{1}{2}
The point:
(0, 1/2)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
1x(x+2)21x+2=0- \frac{1 - x}{\left(x + 2\right)^{2}} - \frac{1}{x + 2} = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
2(x1x+2+1)(x+2)2=0\frac{2 \left(- \frac{x - 1}{x + 2} + 1\right)}{\left(x + 2\right)^{2}} = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Vertical asymptotes
Have:
x1=2x_{1} = -2
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(1xx+2)=1\lim_{x \to -\infty}\left(\frac{1 - x}{x + 2}\right) = -1
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=1y = -1
limx(1xx+2)=1\lim_{x \to \infty}\left(\frac{1 - x}{x + 2}\right) = -1
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=1y = -1
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (1 - x)/(x + 2), divided by x at x->+oo and x ->-oo
limx(1xx(x+2))=0\lim_{x \to -\infty}\left(\frac{1 - x}{x \left(x + 2\right)}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
limx(1xx(x+2))=0\lim_{x \to \infty}\left(\frac{1 - x}{x \left(x + 2\right)}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
1xx+2=x+12x\frac{1 - x}{x + 2} = \frac{x + 1}{2 - x}
- No
1xx+2=x+12x\frac{1 - x}{x + 2} = - \frac{x + 1}{2 - x}
- No
so, the function
not is
neither even, nor odd