Mister Exam

Derivative of (1-x)/(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - x
-----
x + 2
1xx+2\frac{1 - x}{x + 2}
(1 - x)/(x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1xf{\left(x \right)} = 1 - x and g(x)=x+2g{\left(x \right)} = x + 2.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 1x1 - x term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 1-1

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+2x + 2 term by term:

      1. The derivative of the constant 22 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    3(x+2)2- \frac{3}{\left(x + 2\right)^{2}}


The answer is:

3(x+2)2- \frac{3}{\left(x + 2\right)^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
    1      1 - x  
- ----- - --------
  x + 2          2
          (x + 2) 
1x(x+2)21x+2- \frac{1 - x}{\left(x + 2\right)^{2}} - \frac{1}{x + 2}
The second derivative [src]
  /    -1 + x\
2*|1 - ------|
  \    2 + x /
--------------
          2   
   (2 + x)    
2(x1x+2+1)(x+2)2\frac{2 \left(- \frac{x - 1}{x + 2} + 1\right)}{\left(x + 2\right)^{2}}
The third derivative [src]
  /     -1 + x\
6*|-1 + ------|
  \     2 + x /
---------------
           3   
    (2 + x)    
6(x1x+21)(x+2)3\frac{6 \left(\frac{x - 1}{x + 2} - 1\right)}{\left(x + 2\right)^{3}}