Mister Exam

Other calculators

Graphing y = 1/((sqrt|x|-2|x-1|))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
                1         
f(x) = -------------------
         _____            
       \/ |x|  - 2*|x - 1|
$$f{\left(x \right)} = \frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|}$$
f = 1/(sqrt(|x|) - 2*|x - 1|)
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = 0.609611796797792$$
$$x_{2} = 1.64038820320221$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|} = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to 1/(sqrt(|x|) - 2*|x - 1|).
$$\frac{1}{- 2 \left|{-1}\right| + \sqrt{\left|{0}\right|}}$$
The result:
$$f{\left(0 \right)} = - \frac{1}{2}$$
The point:
(0, -1/2)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{2 \operatorname{sign}{\left(x - 1 \right)} - \frac{\operatorname{sign}{\left(x \right)}}{2 \sqrt{\left|{x}\right|}}}{\left(\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|\right)^{2}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{4 \delta\left(x - 1\right) - \frac{\delta\left(x\right)}{\sqrt{\left|{x}\right|}} + \frac{\operatorname{sign}^{2}{\left(x \right)}}{4 \left|{x}\right|^{\frac{3}{2}}} + \frac{\left(4 \operatorname{sign}{\left(x - 1 \right)} - \frac{\operatorname{sign}{\left(x \right)}}{\sqrt{\left|{x}\right|}}\right)^{2}}{2 \left(\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|\right)}}{\left(\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|\right)^{2}} = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Vertical asymptotes
Have:
$$x_{1} = 0.609611796797792$$
$$x_{2} = 1.64038820320221$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 0$$
$$\lim_{x \to \infty} \frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of 1/(sqrt(|x|) - 2*|x - 1|), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x \left(\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|\right)}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{1}{x \left(\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|\right)}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|} = \frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x + 1}\right|}$$
- No
$$\frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x - 1}\right|} = - \frac{1}{\sqrt{\left|{x}\right|} - 2 \left|{x + 1}\right|}$$
- No
so, the function
not is
neither even, nor odd