Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \delta\left(x\right) + 2 \delta\left(x - 1\right) + \frac{3 \left(\operatorname{sign}{\left(x \right)} - 2 \operatorname{sign}{\left(x - 1 \right)}\right)^{2}}{4 \left(\left|{x}\right| - 2 \left|{x - 1}\right|\right)}}{\left(\left|{x}\right| - 2 \left|{x - 1}\right|\right)^{\frac{3}{2}}} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections