Let's find the inflection points, we'll need to solve the equation for this
dx2d2f(x)=0(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
dx2d2f(x)=the second derivative−xi(sign(x)−x∣x∣)=0Solve this equationThe roots of this equation
x1=−10x2=−16x3=−86x4=14x5=−88x6=−92x7=24x8=−60x9=−82x10=−18x11=22x12=80x13=−48x14=60x15=−56x16=90x17=−8x18=26x19=−4x20=46x21=−28x22=−32x23=40x24=98x25=−36x26=−38x27=−22x28=−40x29=−24x30=66x31=−52x32=56x33=88x34=94x35=−6x36=−30x37=76x38=16x39=−96x40=−20x41=44x42=−62x43=6x44=−84x45=12x46=2x47=38x48=92x49=−34x50=72x51=28x52=68x53=78x54=20x55=−50x56=−94x57=32x58=64x59=−100x60=−54x61=−66x62=10x63=58x64=86x65=34x66=−68x67=−12x68=8x69=62x70=−64x71=30x72=−44x73=−58x74=−46x75=50x76=84x77=74x78=−14x79=100x80=−70x81=−2x82=−74x83=−80x84=−42x85=42x86=18x87=4x88=−26x89=52x90=−98x91=48x92=36x93=−72x94=−78x95=82x96=54x97=−90x98=70x99=96x100=−76Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis