Let's find the inflection points, we'll need to solve the equation for this
dx2d2f(x)=0(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
dx2d2f(x)=the second derivative−2(2x2cos(x2+1)+sin(x2+1))=0Solve this equationThe roots of this equation
x1=43.9619214434102x2=−75.4945028307817x3=−89.8405386523628x4=9.73775378723x5=10.6617320557088x6=89.6830421633998x7=5.65706155582907x8=24.2497313967903x9=25.5123743271578x10=70.1672757491473x11=−56.9446623400667x12=−43.8545979379999x13=−76.2604673739696x14=20.0672842611393x15=−1.01229453086059x16=2.63173856168775x17=98.5774666205898x18=56.0269757933469x19=−33.8247093003621x20=46.1581070900829x21=−41.8757660486458x22=13.5198337885067x23=80.0196019886973x24=56.6404188852419x25=1.01229453086059x26=51.0387235155318x27=−57.8749402965492x28=97.2458983016984x29=18.2642031441833x30=−29.8794857718858x31=−45.679191739084x32=−91.8805219605876x33=9.06963525509434x34=−7.76333386150031x35=6.1873231744953x36=−48.3844761967088x37=79.2305054751583x38=−21.8653590295624x39=−4.03849070189123x40=−50.6680588642432x41=−15.8713639465704x42=1.96005320703295x43=49.823982117835x44=−13.7502363642665x45=42.2492095035932x46=−93.8929168735086x47=86.0358248390295x48=−26.3006065129735x49=−27.7535879768054x50=28.3693344458994x51=−9.73775378723x52=−54.6933923768852x53=−31.8145269456219x54=−75.6192403644685x55=13.6355217026362x56=64.0584961091231x57=−19.7516978256737x58=3.16943334466592x59=−99.765406695581x60=−59.639364691151x61=6.67565073578945x62=−37.3555657543961x63=4.03849070189123x64=−51.1923750202349x65=36.6765977670048x66=−86.0540803701783x67=−71.3438924742338x68=−69.8531623466111x69=−81.7864391605895x70=66.4181224916093x71=51.6809901131857x72=21.3565640340599x73=−83.9099517580327x74=−11.7815311084128x75=−6.67565073578945x76=−37.8982715587281x77=100.001301305042x78=−3.16943334466592x79=106.6890857783x80=3.62975193593284x81=−71.9577347198112x82=82.2460932410883x83=8.15792589208374x84=58.1727275619276x85=71.9359019781622x86=94.0934585963188x87=47.3342009703147x88=32.1582845133909x89=−1.96005320703295x90=−18.3500053177433x91=20.2232307965203x92=8.53430091745704Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[97.2458983016984,∞)Convex at the intervals
(−∞,−91.8805219605876]