Mister Exam

Other calculators


cos(x^2+1)

Derivative of cos(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2    \
cos\x  + 1/
$$\cos{\left(x^{2} + 1 \right)}$$
d /   / 2    \\
--\cos\x  + 1//
dx             
$$\frac{d}{d x} \cos{\left(x^{2} + 1 \right)}$$
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        / 2    \
-2*x*sin\x  + 1/
$$- 2 x \sin{\left(x^{2} + 1 \right)}$$
The second derivative [src]
   /   2    /     2\      /     2\\
-2*\2*x *cos\1 + x / + sin\1 + x //
$$- 2 \cdot \left(2 x^{2} \cos{\left(x^{2} + 1 \right)} + \sin{\left(x^{2} + 1 \right)}\right)$$
The third derivative [src]
    /       /     2\      2    /     2\\
4*x*\- 3*cos\1 + x / + 2*x *sin\1 + x //
$$4 x \left(2 x^{2} \sin{\left(x^{2} + 1 \right)} - 3 \cos{\left(x^{2} + 1 \right)}\right)$$
The graph
Derivative of cos(x^2+1)