The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: (−x+2+cos(x))+1=0 Solve this equation The points of intersection with the axis X:
Numerical solution x1=0.822850728246679
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to cos(x) - sqrt(x + 2) + 1. (−2+cos(0))+1 The result: f(0)=2−2 The point:
(0, 2 - sqrt(2))
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative −sin(x)−2x+21=0 Solve this equation The roots of this equation x1=43.9084355497083 x2=78.5955399542555 x3=47.1952370139375 x4=119.335113502387 x5=56.4832396818376 x6=34.6402154949931 x7=18.7395422089983 x8=72.3146642361009 x9=12.4343831841409 x10=69.0556877155551 x11=31.3292099982806 x12=37.6195924976803 x13=3.35928951718931 x14=62.7696855020475 x15=87.9118393733129 x16=59.7539298783793 x17=84.8766710703319 x18=50.1962200197561 x19=100.481553887293 x20=94.1967786854416 x21=−0.407372935845506 x22=53.4742568121558 x23=25.0364322230017 x24=232.445195585766 x25=97.4395340030451 x26=81.6267056168808 x27=40.9171016816084 x28=91.1580137466394 x29=66.0341016203005 x30=15.8266645214722 x31=22.0931900652805 x32=9.5722930781303 x33=6.10666003394995 x34=28.3651953409116 x35=75.3413386012592 The values of the extrema at the points:
(43.90843554970832, -4.77830292793698)
(78.59553995425553, -8.97594971824341)
(47.19523701393752, -7.01138750469409)
(119.33511350238656, -9.01625263569867)
(56.4832396818376, -5.64957318918017)
(34.640215494993065, -6.04969878926072)
(18.73954220899826, -2.56011416068994)
(72.31466423610091, -8.61891189895624)
(12.434383184140883, -1.80795857660106)
(69.05568771555508, -6.4312143171353)
(31.32920999828057, -3.77690311298584)
(37.619592497680316, -4.29756962012607)
(3.3592895171893122, -2.29141140773876)
(62.769685502047516, -6.04989335542023)
(87.91183937331286, -7.48357658753594)
(59.75392987837931, -7.85634065549461)
(84.87667107033185, -9.31932572607707)
(50.19622001975612, -5.22709283452083)
(100.48155388729256, -8.12453781257753)
(94.19677868544157, -7.8092959159218)
(-0.40737293584550616, 0.656171539092775)
(53.47425681215583, -7.4458484010006)
(25.036432223001746, -3.20429106187258)
(232.44519558576573, -13.3121366148542)
(97.4395340030451, -9.97067948807662)
(81.62670561688076, -7.14625969265421)
(40.91710168160843, -6.54819769152871)
(91.15801374663941, -9.65049720746863)
(66.0341016203005, -8.24643970165118)
(15.826664521472244, -4.21512676255686)
(22.09319006528047, -4.90327972493291)
(9.5722930781303, -3.39094668637373)
(6.10666003394995, -0.862759871373676)
(28.36519534091164, -5.50633728955359)
(75.34133860125917, -6.79600997227496)
Intervals of increase and decrease of the function: Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from: Minima of the function at points: x1=78.5955399542555 x2=47.1952370139375 x3=34.6402154949931 x4=72.3146642361009 x5=3.35928951718931 x6=59.7539298783793 x7=84.8766710703319 x8=53.4742568121558 x9=97.4395340030451 x10=40.9171016816084 x11=91.1580137466394 x12=66.0341016203005 x13=15.8266645214722 x14=22.0931900652805 x15=9.5722930781303 x16=28.3651953409116 Maxima of the function at points: x16=43.9084355497083 x16=119.335113502387 x16=56.4832396818376 x16=18.7395422089983 x16=12.4343831841409 x16=69.0556877155551 x16=31.3292099982806 x16=37.6195924976803 x16=62.7696855020475 x16=87.9118393733129 x16=50.1962200197561 x16=100.481553887293 x16=94.1967786854416 x16=−0.407372935845506 x16=25.0364322230017 x16=232.445195585766 x16=81.6267056168808 x16=6.10666003394995 x16=75.3413386012592 Decreasing at intervals [97.4395340030451,∞) Increasing at intervals (−∞,3.35928951718931]
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative −cos(x)+4(x+2)231=0 Solve this equation The roots of this equation x1=29.8465212732249 x2=89.5351051586156 x3=54.9784527026643 x4=64.4021873725592 x5=17.281712314579 x6=11.0009074101868 x7=58.1189277724023 x8=76.9686637605211 x9=95.8183175242421 x10=83.2518877175584 x11=51.8356458841583 x12=20.4179969539229 x13=4.72671910389813 x14=1.53314322401496 x15=39.2689651850464 x16=36.1293773353517 x17=80.1109486658704 x18=67.5446731186246 x19=61.2615536006668 x20=26.701911729892 x21=42.4123454884565 x22=92.6772546569569 x23=45.5523310780247 x24=32.9855147492632 x25=14.1333089972526 x26=48.6953787386129 x27=73.8278059738963 x28=23.5638790964373 x29=7.8458895140298 x30=70.6854312750525 x31=86.3940987926108 x32=98.9604150292827
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals [95.8183175242421,∞) Convex at the intervals (−∞,1.53314322401496]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim((−x+2+cos(x))+1)=⟨0,2⟩−∞i Let's take the limit so, equation of the horizontal asymptote on the left: y=⟨0,2⟩−∞i x→∞lim((−x+2+cos(x))+1)=−∞ Let's take the limit so, horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of cos(x) - sqrt(x + 2) + 1, divided by x at x->+oo and x ->-oo x→−∞lim(x(−x+2+cos(x))+1)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim(x(−x+2+cos(x))+1)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: (−x+2+cos(x))+1=−2−x+cos(x)+1 - No (−x+2+cos(x))+1=2−x−cos(x)−1 - No so, the function not is neither even, nor odd