Mister Exam

Other calculators

Derivative of cos(x)-sqrt(x+2)+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           _______    
cos(x) - \/ x + 2  + 1
(x+2+cos(x))+1\left(- \sqrt{x + 2} + \cos{\left(x \right)}\right) + 1
cos(x) - sqrt(x + 2) + 1
Detail solution
  1. Differentiate (x+2+cos(x))+1\left(- \sqrt{x + 2} + \cos{\left(x \right)}\right) + 1 term by term:

    1. Differentiate x+2+cos(x)- \sqrt{x + 2} + \cos{\left(x \right)} term by term:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let u=x+2u = x + 2.

        2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

        3. Then, apply the chain rule. Multiply by ddx(x+2)\frac{d}{d x} \left(x + 2\right):

          1. Differentiate x+2x + 2 term by term:

            1. Apply the power rule: xx goes to 11

            2. The derivative of the constant 22 is zero.

            The result is: 11

          The result of the chain rule is:

          12x+2\frac{1}{2 \sqrt{x + 2}}

        So, the result is: 12x+2- \frac{1}{2 \sqrt{x + 2}}

      The result is: sin(x)12x+2- \sin{\left(x \right)} - \frac{1}{2 \sqrt{x + 2}}

    2. The derivative of the constant 11 is zero.

    The result is: sin(x)12x+2- \sin{\left(x \right)} - \frac{1}{2 \sqrt{x + 2}}

  2. Now simplify:

    sin(x)12x+2- \sin{\left(x \right)} - \frac{1}{2 \sqrt{x + 2}}


The answer is:

sin(x)12x+2- \sin{\left(x \right)} - \frac{1}{2 \sqrt{x + 2}}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
               1     
-sin(x) - -----------
              _______
          2*\/ x + 2 
sin(x)12x+2- \sin{\left(x \right)} - \frac{1}{2 \sqrt{x + 2}}
The second derivative [src]
               1      
-cos(x) + ------------
                   3/2
          4*(2 + x)   
cos(x)+14(x+2)32- \cos{\left(x \right)} + \frac{1}{4 \left(x + 2\right)^{\frac{3}{2}}}
3-я производная [src]
       3               
- ------------ + sin(x)
           5/2         
  8*(2 + x)            
sin(x)38(x+2)52\sin{\left(x \right)} - \frac{3}{8 \left(x + 2\right)^{\frac{5}{2}}}
The third derivative [src]
       3               
- ------------ + sin(x)
           5/2         
  8*(2 + x)            
sin(x)38(x+2)52\sin{\left(x \right)} - \frac{3}{8 \left(x + 2\right)^{\frac{5}{2}}}