The points at which the function is not precisely defined: x1=−10 x2=2
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: (x−2)(x+10)cos(x)=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to cos(x)/(((x - 2)*(x + 10))). (−1)2⋅10cos(0) The result: f(0)=−201 The point:
(0, -1/20)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative (x−2)2(x+10)2(−2x−8)cos(x)−(x−2)(x+10)1sin(x)=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative (x−2)(x+10)−cos(x)+(x−2)(x+10)4(x+4)sin(x)+(x−2)(x+10)2((x+4)(x+101+x−21)+x+10x+4−1+x−2x+4)cos(x)=0 Solve this equation The roots of this equation x1=45.4710070173758 x2=−86.3449576389006 x3=−42.3043930998253 x4=−26.5119224835866 x5=−83.2014041049884 x6=−58.0445093013385 x7=−190.044832546368 x8=−89.4883646207564 x9=29.7225546767569 x10=−67.4806517839074 x11=−39.1526319974029 x12=54.9092447837187 x13=−76.9137795411141 x14=−70.6252971266199 x15=42.3236490425477 x16=89.4924261335424 x17=−92.6316409673177 x18=64.3436583352986 x19=23.408490381794 x20=7.35769984295323 x21=76.9193095879542 x22=−29.6801615396439 x23=−32.8416196600561 x24=92.6354273858147 x25=−13.3916037185683 x26=95.7783388455168 x27=51.7636909463359 x28=−51.7511406381892 x29=−64.3356786510842 x30=26.5673194144507 x31=−16.8781399543188 x32=80.062780911349 x33=17.071740289959 x34=−20.1312433663008 x35=83.2061146839006 x36=98.9211688644511 x37=−4.80963959200728 x38=32.8752374467871 x39=−61.1903212799701 x40=20.2443394322777 x41=86.3493255488836 x42=−23.3323622844516 x43=−98.9178546297908 x44=−54.8981537926459 x45=39.1754015123576 x46=70.6318829945278 x47=61.1991721850654 x48=−35.9986561408559 x49=−80.0576853892703 x50=58.0543844350502 x51=73.7756836327888 x52=−95.7748003609166 x53=1412.14307316361 x54=48.6176448144202 x55=−48.6033207731632 x56=−73.7696605087807 x57=10.6659557066639 x58=−1.10871099362239 x59=36.0260362022415 x60=−45.4544954337464 x61=67.4878839716098 x62=13.884286370083 You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function: Points where there is an indetermination: x1=−10 x2=2
x→−10−lim(x−2)(x+10)−cos(x)+(x−2)(x+10)4(x+4)sin(x)+(x−2)(x+10)2((x+4)(x+101+x−21)+x+10x+4−1+x−2x+4)cos(x)=−∞ x→−10+lim(x−2)(x+10)−cos(x)+(x−2)(x+10)4(x+4)sin(x)+(x−2)(x+10)2((x+4)(x+101+x−21)+x+10x+4−1+x−2x+4)cos(x)=∞ - the limits are not equal, so x1=−10 - is an inflection point x→2−lim(x−2)(x+10)−cos(x)+(x−2)(x+10)4(x+4)sin(x)+(x−2)(x+10)2((x+4)(x+101+x−21)+x+10x+4−1+x−2x+4)cos(x)=∞ x→2+lim(x−2)(x+10)−cos(x)+(x−2)(x+10)4(x+4)sin(x)+(x−2)(x+10)2((x+4)(x+101+x−21)+x+10x+4−1+x−2x+4)cos(x)=−∞ - the limits are not equal, so x2=2 - is an inflection point
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals [95.7783388455168,∞) Convex at the intervals (−∞,−98.9178546297908]
Vertical asymptotes
Have: x1=−10 x2=2
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim((x−2)(x+10)cos(x))=0 Let's take the limit so, equation of the horizontal asymptote on the left: y=0 x→∞lim((x−2)(x+10)cos(x))=0 Let's take the limit so, equation of the horizontal asymptote on the right: y=0
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of cos(x)/(((x - 2)*(x + 10))), divided by x at x->+oo and x ->-oo x→−∞lim(x(x−2)(x+10)1cos(x))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim(x(x−2)(x+10)1cos(x))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: (x−2)(x+10)cos(x)=(10−x)(−x−2)cos(x) - No (x−2)(x+10)cos(x)=−(10−x)(−x−2)cos(x) - No so, the function not is neither even, nor odd