In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivative−x−2πsin(πx)−(x−2)2cos(πx)=0Solve this equationThe roots of this equation
x1=−33.9971853759713x2=−65.9985099608267x3=43.9975874984823x4=57.9981906541763x5=−57.9983112819197x6=77.9986668109399x7=37.9971853759713x8=89.99884861287x9=17.9936657542665x10=−13.9936657542665x11=39.9973335283242x12=79.9987009960438x13=61.9983112819197x14=−63.9984648067446x15=67.9984648067446x16=−23.9961026419285x17=−49.9980514670226x18=−11.9927602767546x19=−91.9989221068275x20=75.9986307779258x21=15.9927602767546x22=−77.998733471837x23=3.9484545394208x24=−67.9985525345655x25=−17.9949330850375x26=91.9988741996823x27=−39.9975874984823x28=−99.999006648613x29=−71.9986307779258x30=71.9985525345655x31=−87.9988741996823x32=−61.998416830397x33=−95.9989661030993x34=29.9963810744755x35=21.9949330850375x36=7.98308133447286x37=−93.998944563268x38=87.9988218359416x39=35.9970197910376x40=−37.9974668634628x41=−83.9988218359416x42=−97.9989867813195x43=−21.9957777888215x44=−73.9986668109399x45=−1.97456187738277x46=−47.9979735215724x47=−27.9966223736938x48=73.9985927430015x49=5.97456187738277x50=53.9980514670226x51=11.9898610286182x52=−35.9973335283242x53=−69.9985927430015x54=−3.98308133447286x55=27.9961026419285x56=47.9977972952556x57=−29.9968335041224x58=81.998733471837x59=31.9966223736938x60=−81.9987937838856x61=−9.99155260376159x62=−5.98732145729946x63=−85.99884861287x64=−55.998253047962x65=−53.9981906541763x66=9.98732145729946x67=25.9957777888215x68=49.9978890801189x69=−51.9981236383186x70=−45.9978890801189x71=41.9974668634628x72=93.9988986739972x73=0.0515454605792004x74=−31.9970197910376x75=45.9976971654773x76=97.998944563268x77=69.9985099608267x78=95.9989221068275x79=63.9983657586429x80=−15.9943698713525x81=−89.9988986739972x82=23.9953938487289x83=83.9987643633963x84=19.9943698713525x85=85.9987937838856x86=65.998416830397x87=−75.9987009960438x88=−19.9953938487289x89=−79.9987643633963x90=−43.9977972952556x91=51.9979735215724x92=13.9915526037616x93=59.998253047962x94=−25.9963810744755x95=−59.9983657586429x96=55.9981236383186x97=−7.98986102861818x98=33.9968335041224x99=99.9989661030993x100=−41.9976971654773The values of the extrema at the points:
(-33.99718537597127, -0.0277799497253893*cos(1.99718537597127*pi))
(-65.99850996082668, -0.014706204600308*cos(1.99850996082668*pi))
(43.99758749848229, 0.0238108915193316*cos(1.99758749848229*pi))
(57.998190654176284, 0.0178577198355501*cos(1.99819065417628*pi))
(-57.99831128191967, -0.0166671357682253*cos(1.99831128191967*pi))
(77.99866681093987, 0.0131581255561716*cos(1.99866681093987*pi))
(37.99718537597127, 0.0277799497253893*cos(1.99718537597127*pi))
(89.99884861287003, 0.011363785046771*cos(1.99884861287003*pi))
(17.993665754266548, 0.0625247529468493*cos(1.99366575426655*pi))
(-13.993665754266546, -0.0625247529468493*cos(1.99366575426655*pi))
(39.99733352832425, 0.026317636190302*cos(1.99733352832425*pi))
(79.99870099604381, 0.0128207263355671*cos(1.99870099604381*pi))
(61.99831128191967, 0.0166671357682253*cos(1.99831128191967*pi))
(-63.99846480674464, -0.0151518675915899*cos(1.99846480674464*pi))
(67.99846480674465, 0.0151518675915899*cos(1.99846480674465*pi))
(-23.996102641928523, -0.0384673046484715*cos(1.99610264192852*pi))
(-49.99805146702257, -0.0192314898690811*cos(1.99805146702257*pi))
(-11.99276027675465, -0.0714655279031144*cos(1.99276027675465*pi))
(-91.99892210682754, -0.0106384198625546*cos(1.99892210682754*pi))
(75.99863077792584, 0.0135137635586942*cos(1.99863077792584*pi))
(15.99276027675465, 0.0714655279031144*cos(1.99276027675465*pi))
(-77.99873347183703, -0.0125001978981585*cos(1.99873347183703*pi))
(3.9484545394207995, 0.513227267954253*cos(1.9484545394208*pi))
(-67.99855253456555, -0.0142860096929318*cos(1.99855253456555*pi))
(-17.994933085037538, -0.0500126704974228*cos(1.99493308503754*pi))
(91.9988741996823, 0.0111112501005433*cos(1.99887419968231*pi))
(-39.99758749848229, -0.0238108915193316*cos(1.99758749848229*pi))
(-99.999006648613, -0.00980401704739149*cos(1.999006648613*pi))
(-71.99863077792584, -0.0135137635586942*cos(1.99863077792584*pi))
(71.99855253456555, 0.0142860096929318*cos(1.99855253456555*pi))
(-87.9988741996823, -0.0111112501005433*cos(1.99887419968231*pi))
(-61.998416830397005, -0.0156253865255779*cos(1.99841683039701*pi))
(-95.99896610309928, -0.0102041892865273*cos(1.99896610309928*pi))
(29.9963810744755, 0.0357189022873998*cos(1.9963810744755*pi))
(21.994933085037538, 0.0500126704974228*cos(1.99493308503754*pi))
(7.983081334472861, 0.167137958536227*cos(1.98308133447286*pi))
(-93.99894456326798, -0.0104167811901406*cos(1.99894456326798*pi))
(87.9988218359416, 0.0116280662763925*cos(1.9988218359416*pi))
(35.99701979103759, 0.0294143429673098*cos(1.99701979103759*pi))
(-37.99746686346282, -0.0250015833106043*cos(1.99746686346282*pi))
(-83.9988218359416, -0.0116280662763925*cos(1.9988218359416*pi))
(-97.9989867813195, -0.0100001013228947*cos(1.9989867813195*pi))
(-21.995777788821496, -0.0416739981842078*cos(1.9957777888215*pi))
(-73.99866681093987, -0.0131581255561716*cos(1.99866681093987*pi))
(-1.9745618773827747, -0.251600058283278*cos(1.97456187738277*pi))
(-47.99797352157236, -0.0200008106242253*cos(1.99797352157236*pi))
(-27.996622373693775, -0.0333370866740308*cos(1.99662237369377*pi))
(73.99859274300154, 0.0138891603558071*cos(1.99859274300154*pi))
(5.974561877382775, 0.251600058283278*cos(1.97456187738277*pi))
(53.99805146702257, 0.0192314898690811*cos(1.99805146702257*pi))
(11.989861028618183, 0.100101492616892*cos(1.98986102861818*pi))
(-35.99733352832425, -0.026317636190302*cos(1.99733352832425*pi))
(-69.99859274300154, -0.0138891603558071*cos(1.99859274300154*pi))
(-3.9830813344728613, -0.167137958536227*cos(1.98308133447286*pi))
(27.996102641928523, 0.0384673046484715*cos(1.99610264192852*pi))
(47.997797295255594, 0.0217401714604091*cos(1.99779729525559*pi))
(-29.996833504122364, -0.0312530925871513*cos(1.99683350412236*pi))
(81.99873347183703, 0.0125001978981585*cos(1.99873347183703*pi))
(31.996622373693775, 0.0333370866740308*cos(1.99662237369377*pi))
(-81.99879378388556, -0.0119049328562125*cos(1.99879378388556*pi))
(-9.991552603761589, -0.0833920371317317*cos(1.99155260376159*pi))
(-5.9873214572994575, -0.125198416683996*cos(1.98732145729946*pi))
(-85.99884861287003, -0.011363785046771*cos(1.99884861287003*pi))
(-55.998253047962045, -0.0172418986339648*cos(1.99825304796205*pi))
(-53.998190654176284, -0.0178577198355501*cos(1.99819065417628*pi))
(9.987321457299458, 0.125198416683996*cos(1.98732145729946*pi))
(25.995777788821496, 0.0416739981842078*cos(1.9957777888215*pi))
(49.997889080118895, 0.0208342495714923*cos(1.9978890801189*pi))
(-51.99812363831861, -0.0185191620119624*cos(1.99812363831861*pi))
(-45.997889080118895, -0.0208342495714923*cos(1.9978890801189*pi))
(41.99746686346282, 0.0250015833106043*cos(1.99746686346282*pi))
(93.99889867399723, 0.0108696953378056*cos(1.99889867399723*pi))
(0.05154546057920037, -0.513227267954253*cos(0.0515454605792004*pi))
(-31.997019791037587, -0.0294143429673098*cos(1.99701979103759*pi))
(45.997697165477256, 0.0227284622701719*cos(1.99769716547726*pi))
(97.99894456326798, 0.0104167811901406*cos(1.99894456326798*pi))
(69.99850996082668, 0.014706204600308*cos(1.99850996082668*pi))
(95.99892210682754, 0.0106384198625546*cos(1.99892210682754*pi))
(63.99836575864295, 0.0161294574101027*cos(1.99836575864295*pi))
(-15.994369871352536, -0.0555729379327711*cos(1.99436987135254*pi))
(-89.99889867399723, -0.0108696953378056*cos(1.99889867399723*pi))
(23.99539384872894, 0.0454640642889778*cos(1.99539384872894*pi))
(83.99876436339626, 0.0121953057190993*cos(1.99876436339626*pi))
(19.994369871352536, 0.0555729379327711*cos(1.99436987135254*pi))
(85.99879378388556, 0.0119049328562125*cos(1.99879378388556*pi))
(65.998416830397, 0.0156253865255779*cos(1.99841683039701*pi))
(-75.99870099604381, -0.0128207263355671*cos(1.99870099604381*pi))
(-19.99539384872894, -0.0454640642889778*cos(1.99539384872894*pi))
(-79.99876436339626, -0.0121953057190993*cos(1.99876436339626*pi))
(-43.997797295255594, -0.0217401714604091*cos(1.99779729525559*pi))
(51.99797352157236, 0.0200008106242253*cos(1.99797352157236*pi))
(13.991552603761589, 0.0833920371317317*cos(1.99155260376159*pi))
(59.998253047962045, 0.0172418986339648*cos(1.99825304796205*pi))
(-25.9963810744755, -0.0357189022873998*cos(1.9963810744755*pi))
(-59.99836575864295, -0.0161294574101027*cos(1.99836575864295*pi))
(55.99812363831861, 0.0185191620119624*cos(1.99812363831861*pi))
(-7.989861028618183, -0.100101492616892*cos(1.98986102861818*pi))
(33.996833504122364, 0.0312530925871513*cos(1.99683350412236*pi))
(99.99896610309928, 0.0102041892865273*cos(1.99896610309928*pi))
(-41.997697165477256, -0.0227284622701719*cos(1.99769716547726*pi))
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−33.9971853759713x2=−65.9985099608267x3=−57.9983112819197x4=−13.9936657542665x5=−63.9984648067446x6=−23.9961026419285x7=−49.9980514670226x8=−11.9927602767546x9=−91.9989221068275x10=−77.998733471837x11=−67.9985525345655x12=−17.9949330850375x13=−39.9975874984823x14=−99.999006648613x15=−71.9986307779258x16=−87.9988741996823x17=−61.998416830397x18=−95.9989661030993x19=−93.998944563268x20=−37.9974668634628x21=−83.9988218359416x22=−97.9989867813195x23=−21.9957777888215x24=−73.9986668109399x25=−1.97456187738277x26=−47.9979735215724x27=−27.9966223736938x28=−35.9973335283242x29=−69.9985927430015x30=−3.98308133447286x31=−29.9968335041224x32=−81.9987937838856x33=−9.99155260376159x34=−5.98732145729946x35=−85.99884861287x36=−55.998253047962x37=−53.9981906541763x38=−51.9981236383186x39=−45.9978890801189x40=0.0515454605792004x41=−31.9970197910376x42=−15.9943698713525x43=−89.9988986739972x44=−75.9987009960438x45=−19.9953938487289x46=−79.9987643633963x47=−43.9977972952556x48=−25.9963810744755x49=−59.9983657586429x50=−7.98986102861818x51=−41.9976971654773Maxima of the function at points:
x51=43.9975874984823x51=57.9981906541763x51=77.9986668109399x51=37.9971853759713x51=89.99884861287x51=17.9936657542665x51=39.9973335283242x51=79.9987009960438x51=61.9983112819197x51=67.9984648067446x51=75.9986307779258x51=15.9927602767546x51=3.9484545394208x51=91.9988741996823x51=71.9985525345655x51=29.9963810744755x51=21.9949330850375x51=7.98308133447286x51=87.9988218359416x51=35.9970197910376x51=73.9985927430015x51=5.97456187738277x51=53.9980514670226x51=11.9898610286182x51=27.9961026419285x51=47.9977972952556x51=81.998733471837x51=31.9966223736938x51=9.98732145729946x51=25.9957777888215x51=49.9978890801189x51=41.9974668634628x51=93.9988986739972x51=45.9976971654773x51=97.998944563268x51=69.9985099608267x51=95.9989221068275x51=63.9983657586429x51=23.9953938487289x51=83.9987643633963x51=19.9943698713525x51=85.9987937838856x51=65.998416830397x51=51.9979735215724x51=13.9915526037616x51=59.998253047962x51=55.9981236383186x51=33.9968335041224x51=99.9989661030993Decreasing at intervals
[0.0515454605792004,3.9484545394208]Increasing at intervals
(−∞,−99.999006648613]