Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(- 2 \log{\left(x \right)}^{2} \cos{\left(\log{\left(x \right)}^{2} \right)} + \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{2} \right)} - \sin{\left(\log{\left(x \right)}^{2} \right)}\right)}{x^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 3.39820763903788$$
$$x_{2} = 42.391672714506$$
$$x_{3} = 27.1141331952268$$
$$x_{4} = 90.863105833431$$
$$x_{5} = 63.1669364610808$$
$$x_{6} = 8.51727178841714$$
$$x_{7} = 16.1508219819342$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[90.863105833431, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 3.39820763903788\right]$$