The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: acos(x)=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to acos(sqrt(x)). acos(0) The result: f(0)=2π The point:
(0, pi/2)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative −2x1−x1=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative 4x1−x−1−x1+x1=0 Solve this equation The roots of this equation x1=21
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals (−∞,21] Convex at the intervals [21,∞)
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of acos(sqrt(x)), divided by x at x->+oo and x ->-oo
True
Let's take the limit so, inclined asymptote equation on the left: y=xx→−∞lim(xacos(x)) x→∞lim(xacos(x))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: acos(x)=acos(−x) - No acos(x)=−acos(−x) - No so, the function not is neither even, nor odd