Mister Exam

Derivative of arccos(sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  ___\
acos\\/ x /
$$\operatorname{acos}{\left(\sqrt{x} \right)}$$
d /    /  ___\\
--\acos\\/ x //
dx             
$$\frac{d}{d x} \operatorname{acos}{\left(\sqrt{x} \right)}$$
The graph
The first derivative [src]
       -1        
-----------------
    ___   _______
2*\/ x *\/ 1 - x 
$$- \frac{1}{2 \sqrt{x} \sqrt{- x + 1}}$$
The second derivative [src]
    1     1      
    - - -----    
    x   1 - x    
-----------------
    ___   _______
4*\/ x *\/ 1 - x 
$$\frac{- \frac{1}{- x + 1} + \frac{1}{x}}{4 \sqrt{x} \sqrt{- x + 1}}$$
The third derivative [src]
  3       3           2    
- -- - -------- + ---------
   2          2   x*(1 - x)
  x    (1 - x)             
---------------------------
         ___   _______     
     8*\/ x *\/ 1 - x      
$$\frac{- \frac{3}{\left(- x + 1\right)^{2}} + \frac{2}{x \left(- x + 1\right)} - \frac{3}{x^{2}}}{8 \sqrt{x} \sqrt{- x + 1}}$$
The graph
Derivative of arccos(sqrt(x))