Mister Exam

Other calculators

Graphing y = (abs((2-3*x)/(2-x)))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       |2 - 3*x|
f(x) = |-------|
       | 2 - x |
f(x)=23x2xf{\left(x \right)} = \left|{\frac{2 - 3 x}{2 - x}}\right|
f = Abs((2 - 3*x)/(2 - x))
The graph of the function
02468-8-6-4-2-10100100
The domain of the function
The points at which the function is not precisely defined:
x1=2x_{1} = 2
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
23x2x=0\left|{\frac{2 - 3 x}{2 - x}}\right| = 0
Solve this equation
The points of intersection with the axis X:

Numerical solution
x1=0.666666666666667x_{1} = 0.666666666666667
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to Abs((2 - 3*x)/(2 - x)).
2020\left|{\frac{2 - 0}{2 - 0}}\right|
The result:
f(0)=1f{\left(0 \right)} = 1
The point:
(0, 1)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
(23x)(x2)(23x(2x)232x)sign(3x2x2)(2x)(3x2)=0\frac{\left(2 - 3 x\right) \left(x - 2\right) \left(\frac{2 - 3 x}{\left(2 - x\right)^{2}} - \frac{3}{2 - x}\right) \operatorname{sign}{\left(\frac{3 x - 2}{x - 2} \right)}}{\left(2 - x\right) \left(3 x - 2\right)} = 0
Solve this equation
Solutions are not found,
function may have no extrema
Vertical asymptotes
Have:
x1=2x_{1} = 2
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx23x2x=3\lim_{x \to -\infty} \left|{\frac{2 - 3 x}{2 - x}}\right| = 3
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=3y = 3
limx23x2x=3\lim_{x \to \infty} \left|{\frac{2 - 3 x}{2 - x}}\right| = 3
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=3y = 3
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of Abs((2 - 3*x)/(2 - x)), divided by x at x->+oo and x ->-oo
limx(23x2xx)=0\lim_{x \to -\infty}\left(\frac{\left|{\frac{2 - 3 x}{2 - x}}\right|}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
limx(23x2xx)=0\lim_{x \to \infty}\left(\frac{\left|{\frac{2 - 3 x}{2 - x}}\right|}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
23x2x=3x+2x+2\left|{\frac{2 - 3 x}{2 - x}}\right| = \left|{\frac{3 x + 2}{x + 2}}\right|
- No
23x2x=3x+2x+2\left|{\frac{2 - 3 x}{2 - x}}\right| = - \left|{\frac{3 x + 2}{x + 2}}\right|
- No
so, the function
not is
neither even, nor odd