Mister Exam

Other calculators


x^4+16=0

x^4+16=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4         
x  + 16 = 0
$$x^{4} + 16 = 0$$
Detail solution
Given the equation
$$x^{4} + 16 = 0$$
Because equation degree is equal to = 4 and the free term = -16 < 0,
so the real solutions of the equation d'not exist

All other 4 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{4} = -16$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{4} e^{4 i p} = -16$$
where
$$r = 2$$
- the magnitude of the complex number
Substitute r:
$$e^{4 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = -1$$
so
$$\cos{\left(4 p \right)} = -1$$
and
$$\sin{\left(4 p \right)} = 0$$
then
$$p = \frac{\pi N}{2} + \frac{\pi}{4}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = - \sqrt{2} - \sqrt{2} i$$
$$z_{2} = - \sqrt{2} + \sqrt{2} i$$
$$z_{3} = \sqrt{2} - \sqrt{2} i$$
$$z_{4} = \sqrt{2} + \sqrt{2} i$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = - \sqrt{2} - \sqrt{2} i$$
$$x_{2} = - \sqrt{2} + \sqrt{2} i$$
$$x_{3} = \sqrt{2} - \sqrt{2} i$$
$$x_{4} = \sqrt{2} + \sqrt{2} i$$
The graph
Sum and product of roots [src]
sum
    ___       ___       ___       ___     ___       ___     ___       ___
- \/ 2  - I*\/ 2  + - \/ 2  + I*\/ 2  + \/ 2  - I*\/ 2  + \/ 2  + I*\/ 2 
$$\left(- \sqrt{2} - \sqrt{2} i\right) + \left(- \sqrt{2} + \sqrt{2} i\right) + \left(\sqrt{2} - \sqrt{2} i\right) + \left(\sqrt{2} + \sqrt{2} i\right)$$
=
0
$$0$$
product
    ___       ___       ___       ___     ___       ___     ___       ___
- \/ 2  - I*\/ 2  * - \/ 2  + I*\/ 2  * \/ 2  - I*\/ 2  * \/ 2  + I*\/ 2 
$$\left(- \sqrt{2} - \sqrt{2} i\right) * \left(- \sqrt{2} + \sqrt{2} i\right) * \left(\sqrt{2} - \sqrt{2} i\right) * \left(\sqrt{2} + \sqrt{2} i\right)$$
=
16
$$16$$
Rapid solution [src]
          ___       ___
x_1 = - \/ 2  - I*\/ 2 
$$x_{1} = - \sqrt{2} - \sqrt{2} i$$
          ___       ___
x_2 = - \/ 2  + I*\/ 2 
$$x_{2} = - \sqrt{2} + \sqrt{2} i$$
        ___       ___
x_3 = \/ 2  - I*\/ 2 
$$x_{3} = \sqrt{2} - \sqrt{2} i$$
        ___       ___
x_4 = \/ 2  + I*\/ 2 
$$x_{4} = \sqrt{2} + \sqrt{2} i$$
Numerical answer [src]
x1 = -1.4142135623731 + 1.4142135623731*i
x2 = 1.4142135623731 - 1.4142135623731*i
x3 = -1.4142135623731 - 1.4142135623731*i
x4 = 1.4142135623731 + 1.4142135623731*i
x4 = 1.4142135623731 + 1.4142135623731*i
The graph
x^4+16=0 equation