x-y=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x-y = 2
Looking for similar summands in the left part:
x - y = 2
Move the summands with the other variables
from left part to right part, we given:
$$x = y + 2$$
We get the answer: x = 2 + y
Sum and product of roots
[src]
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 2$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 2$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 2$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 2$$
$$x_{1} = \operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 2$$