x+y=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x+y = 2
Looking for similar summands in the left part:
x + y = 2
Move the summands with the other variables
from left part to right part, we given:
$$x = 2 - y$$
We get the answer: x = 2 - y
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 2$$
x1 = -re(y) - i*im(y) + 2
Sum and product of roots
[src]
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 2$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 2$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 2$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 2$$