Mister Exam

Other calculators


(x-1)/(5-x)=2/9

(x-1)/(5-x)=2/9 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
x - 1      
----- = 2/9
5 - x      
$$\frac{x - 1}{5 - x} = \frac{2}{9}$$
Detail solution
Given the equation:
$$\frac{x - 1}{5 - x} = \frac{2}{9}$$
Multiply the equation sides by the denominator 5 - x
we get:
$$\frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} = \frac{10}{9} - \frac{2 x}{9}$$
Expand brackets in the left part
1+x5+x-5+x = 10/9 - 2*x/9

Looking for similar summands in the left part:
(1 - x)*(5 - x)/(-5 + x) = 10/9 - 2*x/9

Move free summands (without x)
from left part to right part, we given:
$$\frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} + 5 = \frac{55}{9} - \frac{2 x}{9}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{2 x}{9} + \frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} + 5 = \frac{55}{9}$$
Divide both parts of the equation by (5 + 2*x/9 + (1 - x)*(5 - x)/(-5 + x))/x
x = 55/9 / ((5 + 2*x/9 + (1 - x)*(5 - x)/(-5 + x))/x)

We get the answer: x = 19/11
The graph
Rapid solution [src]
     19
x1 = --
     11
$$x_{1} = \frac{19}{11}$$
x1 = 19/11
Sum and product of roots [src]
sum
19
--
11
$$\frac{19}{11}$$
=
19
--
11
$$\frac{19}{11}$$
product
19
--
11
$$\frac{19}{11}$$
=
19
--
11
$$\frac{19}{11}$$
19/11
Numerical answer [src]
x1 = 1.72727272727273
x1 = 1.72727272727273
The graph
(x-1)/(5-x)=2/9 equation