Given the equation:
$$\frac{x - 1}{5 - x} = \frac{2}{9}$$
Multiply the equation sides by the denominator 5 - x
we get:
$$\frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} = \frac{10}{9} - \frac{2 x}{9}$$
Expand brackets in the left part
1+x5+x-5+x = 10/9 - 2*x/9
Looking for similar summands in the left part:
(1 - x)*(5 - x)/(-5 + x) = 10/9 - 2*x/9
Move free summands (without x)
from left part to right part, we given:
$$\frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} + 5 = \frac{55}{9} - \frac{2 x}{9}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{2 x}{9} + \frac{\left(1 - x\right) \left(5 - x\right)}{x - 5} + 5 = \frac{55}{9}$$
Divide both parts of the equation by (5 + 2*x/9 + (1 - x)*(5 - x)/(-5 + x))/x
x = 55/9 / ((5 + 2*x/9 + (1 - x)*(5 - x)/(-5 + x))/x)
We get the answer: x = 19/11