2^x=1 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$2^{x} = 1$$
or
$$2^{x} - 1 = 0$$
or
$$2^{x} = 1$$
or
$$2^{x} = 1$$
- this is the simplest exponential equation
Do replacement
$$v = 2^{x}$$
we get
$$v - 1 = 0$$
or
$$v - 1 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 1$$
We get the answer: v = 1
do backward replacement
$$2^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(1 \right)}}{\log{\left(2 \right)}} = 0$$
Sum and product of roots
[src]
$$0$$
$$0$$
$$0$$
$$0$$
x1 = 9.63519204408339e-13