Mister Exam

Other calculators

2*x+y=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*x + y = 5
$$2 x + y = 5$$
Detail solution
Given the linear equation:
2*x+y = 5

Looking for similar summands in the left part:
y + 2*x = 5

Move the summands with the other variables
from left part to right part, we given:
$$2 x = 5 - y$$
Divide both parts of the equation by 2
x = 5 - y / (2)

We get the answer: x = 5/2 - y/2
The graph
Rapid solution [src]
     5   re(y)   I*im(y)
x1 = - - ----- - -------
     2     2        2   
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
x1 = -re(y)/2 - i*im(y)/2 + 5/2
Sum and product of roots [src]
sum
5   re(y)   I*im(y)
- - ----- - -------
2     2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
=
5   re(y)   I*im(y)
- - ----- - -------
2     2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
product
5   re(y)   I*im(y)
- - ----- - -------
2     2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
=
5   re(y)   I*im(y)
- - ----- - -------
2     2        2   
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
5/2 - re(y)/2 - i*im(y)/2