2x+y=5 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
2*x+y = 5
Looking for similar summands in the left part:
y + 2*x = 5
Move the summands with the other variables
from left part to right part, we given:
$$2 x = 5 - y$$
Divide both parts of the equation by 2
x = 5 - y / (2)
We get the answer: x = 5/2 - y/2
Sum and product of roots
[src]
5 re(y) I*im(y)
- - ----- - -------
2 2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
5 re(y) I*im(y)
- - ----- - -------
2 2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
5 re(y) I*im(y)
- - ----- - -------
2 2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
5 re(y) I*im(y)
- - ----- - -------
2 2 2
$$- \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
5/2 - re(y)/2 - i*im(y)/2
5 re(y) I*im(y)
x1 = - - ----- - -------
2 2 2
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{2} - \frac{i \operatorname{im}{\left(y\right)}}{2} + \frac{5}{2}$$
x1 = -re(y)/2 - i*im(y)/2 + 5/2