Mister Exam

Other calculators

(2log9)^2-3log9x+1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
          2                     
(2*log(9))  - 3*log(9*x) + 1 = 0
$$\left(- 3 \log{\left(9 x \right)} + \left(2 \log{\left(9 \right)}\right)^{2}\right) + 1 = 0$$
Detail solution
Given the equation
$$\left(- 3 \log{\left(9 x \right)} + \left(2 \log{\left(9 \right)}\right)^{2}\right) + 1 = 0$$
$$- 3 \log{\left(9 x \right)} = - 4 \log{\left(9 \right)}^{2} - 1$$
Let's divide both parts of the equation by the multiplier of log =-3
$$\log{\left(9 x \right)} = \frac{1}{3} + \frac{4 \log{\left(9 \right)}^{2}}{3}$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$9 x = e^{\frac{- 4 \log{\left(9 \right)}^{2} - 1}{-3}}$$
simplify
$$9 x = e^{\frac{1}{3} + \frac{4 \log{\left(9 \right)}^{2}}{3}}$$
$$x = \frac{e^{\frac{1}{3} + \frac{4 \log{\left(9 \right)}^{2}}{3}}}{9}$$
The graph
Rapid solution [src]
                2   
      1   16*log (3)
      - + ----------
      3       3     
     e              
x1 = ---------------
            9       
$$x_{1} = \frac{e^{\frac{1}{3} + \frac{16 \log{\left(3 \right)}^{2}}{3}}}{9}$$
x1 = exp(1/3 + 16*log(3)^2/3)/9
Sum and product of roots [src]
sum
           2   
 1   16*log (3)
 - + ----------
 3       3     
e              
---------------
       9       
$$\frac{e^{\frac{1}{3} + \frac{16 \log{\left(3 \right)}^{2}}{3}}}{9}$$
=
           2   
 1   16*log (3)
 - + ----------
 3       3     
e              
---------------
       9       
$$\frac{e^{\frac{1}{3} + \frac{16 \log{\left(3 \right)}^{2}}{3}}}{9}$$
product
           2   
 1   16*log (3)
 - + ----------
 3       3     
e              
---------------
       9       
$$\frac{e^{\frac{1}{3} + \frac{16 \log{\left(3 \right)}^{2}}{3}}}{9}$$
=
           2   
 1   16*log (3)
 - + ----------
 3       3     
e              
---------------
       9       
$$\frac{e^{\frac{1}{3} + \frac{16 \log{\left(3 \right)}^{2}}{3}}}{9}$$
exp(1/3 + 16*log(3)^2/3)/9
Numerical answer [src]
x1 = 96.8506286048226
x1 = 96.8506286048226