Mister Exam

Other calculators

12*x+y=120 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
12*x + y = 120
$$12 x + y = 120$$
Detail solution
Given the linear equation:
12*x+y = 120

Looking for similar summands in the left part:
y + 12*x = 120

Move the summands with the other variables
from left part to right part, we given:
$$12 x = 120 - y$$
Divide both parts of the equation by 12
x = 120 - y / (12)

We get the answer: x = 10 - y/12
The graph
Rapid solution [src]
          re(y)   I*im(y)
x1 = 10 - ----- - -------
            12       12  
$$x_{1} = - \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + 10$$
x1 = -re(y)/12 - i*im(y)/12 + 10
Sum and product of roots [src]
sum
     re(y)   I*im(y)
10 - ----- - -------
       12       12  
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + 10$$
=
     re(y)   I*im(y)
10 - ----- - -------
       12       12  
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + 10$$
product
     re(y)   I*im(y)
10 - ----- - -------
       12       12  
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + 10$$
=
     re(y)   I*im(y)
10 - ----- - -------
       12       12  
$$- \frac{\operatorname{re}{\left(y\right)}}{12} - \frac{i \operatorname{im}{\left(y\right)}}{12} + 10$$
10 - re(y)/12 - i*im(y)/12