Mister Exam

Other calculators

10x+12x+y-12y=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
10*x + 12*x + y - 12*y = 0
$$- 12 y + \left(y + \left(10 x + 12 x\right)\right) = 0$$
Detail solution
Given the linear equation:
10*x+12*x+y-12*y = 0

Looking for similar summands in the left part:
-11*y + 22*x = 0

Move the summands with the other variables
from left part to right part, we given:
$$22 x = 11 y$$
Divide both parts of the equation by 22
x = 11*y / (22)

We get the answer: x = y/2
The graph
Rapid solution [src]
     re(y)   I*im(y)
x1 = ----- + -------
       2        2   
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
x1 = re(y)/2 + i*im(y)/2
Sum and product of roots [src]
sum
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
=
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
product
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
=
re(y)   I*im(y)
----- + -------
  2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
re(y)/2 + i*im(y)/2