10x+12x+y-12y=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
10*x+12*x+y-12*y = 0
Looking for similar summands in the left part:
-11*y + 22*x = 0
Move the summands with the other variables
from left part to right part, we given:
$$22 x = 11 y$$
Divide both parts of the equation by 22
x = 11*y / (22)
We get the answer: x = y/2
re(y) I*im(y)
x1 = ----- + -------
2 2
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
Sum and product of roots
[src]
re(y) I*im(y)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
re(y) I*im(y)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
re(y) I*im(y)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$
re(y) I*im(y)
----- + -------
2 2
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2}$$