Mister Exam

Other calculators

12(x+y)=624 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
12*(x + y) = 624
$$12 \left(x + y\right) = 624$$
Detail solution
Given the linear equation:
12*(x+y) = 624

Expand brackets in the left part
12*x+12*y = 624

Looking for similar summands in the left part:
12*x + 12*y = 624

Move the summands with the other variables
from left part to right part, we given:
$$12 x = 624 - 12 y$$
Divide both parts of the equation by 12
x = 624 - 12*y / (12)

We get the answer: x = 52 - y
The graph
Rapid solution [src]
x1 = 52 - re(y) - I*im(y)
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
x1 = -re(y) - i*im(y) + 52
Sum and product of roots [src]
sum
52 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
=
52 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
product
52 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
=
52 - re(y) - I*im(y)
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
52 - re(y) - i*im(y)