12(x+y)=624 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
12*(x+y) = 624
Expand brackets in the left part
12*x+12*y = 624
Looking for similar summands in the left part:
12*x + 12*y = 624
Move the summands with the other variables
from left part to right part, we given:
$$12 x = 624 - 12 y$$
Divide both parts of the equation by 12
x = 624 - 12*y / (12)
We get the answer: x = 52 - y
x1 = 52 - re(y) - I*im(y)
$$x_{1} = - \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
x1 = -re(y) - i*im(y) + 52
Sum and product of roots
[src]
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$
$$- \operatorname{re}{\left(y\right)} - i \operatorname{im}{\left(y\right)} + 52$$