Mister Exam

Other calculators


sqrt(x-1)=x

sqrt(x-1)=x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  _______    
\/ x - 1  = x
$$\sqrt{x - 1} = x$$
Detail solution
Given the equation
$$\sqrt{x - 1} = x$$
$$\sqrt{x - 1} = x$$
We raise the equation sides to 2-th degree
$$x - 1 = x^{2}$$
$$x - 1 = x^{2}$$
Transfer the right side of the equation left part with negative sign
$$- x^{2} + x - 1 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -1$$
$$b = 1$$
$$c = -1$$
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (-1) * (-1) = -3

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
$$x_{2} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
The graph
Sum and product of roots [src]
sum
        ___           ___
1   I*\/ 3    1   I*\/ 3 
- - ------- + - + -------
2      2      2      2   
$$\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
=
1
$$1$$
product
/        ___\ /        ___\
|1   I*\/ 3 | |1   I*\/ 3 |
|- - -------|*|- + -------|
\2      2   / \2      2   /
$$\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
=
1
$$1$$
1
Rapid solution [src]
             ___
     1   I*\/ 3 
x1 = - - -------
     2      2   
$$x_{1} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
             ___
     1   I*\/ 3 
x2 = - + -------
     2      2   
$$x_{2} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
x2 = 1/2 + sqrt(3)*i/2
Numerical answer [src]
x1 = 0.5 - 0.866025403784439*i
x2 = 0.5 + 0.866025403784439*i
x2 = 0.5 + 0.866025403784439*i
The graph
sqrt(x-1)=x equation