Mister Exam

Other calculators

sqrt(x)-4root(4)(x)=5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  ___       ___      
\/ x  - 4*\/ 4 *x = 5
$$\sqrt{x} - 4 \sqrt{4} x = 5$$
Detail solution
Given the equation
$$\sqrt{x} - 4 \sqrt{4} x = 5$$
$$\sqrt{x} = 8 x + 5$$
We raise the equation sides to 2-th degree
$$x = \left(8 x + 5\right)^{2}$$
$$x = 64 x^{2} + 80 x + 25$$
Transfer the right side of the equation left part with negative sign
$$- 64 x^{2} - 79 x - 25 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -64$$
$$b = -79$$
$$c = -25$$
, then
D = b^2 - 4 * a * c = 

(-79)^2 - 4 * (-64) * (-25) = -159

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{79}{128} - \frac{\sqrt{159} i}{128}$$
$$x_{2} = - \frac{79}{128} + \frac{\sqrt{159} i}{128}$$
The graph
Rapid solution [src]
                 _____
        79   I*\/ 159 
x1 = - --- - ---------
       128      128   
$$x_{1} = - \frac{79}{128} - \frac{\sqrt{159} i}{128}$$
                 _____
        79   I*\/ 159 
x2 = - --- + ---------
       128      128   
$$x_{2} = - \frac{79}{128} + \frac{\sqrt{159} i}{128}$$
x2 = -79/128 + sqrt(159)*i/128
Sum and product of roots [src]
sum
            _____               _____
   79   I*\/ 159       79   I*\/ 159 
- --- - --------- + - --- + ---------
  128      128        128      128   
$$\left(- \frac{79}{128} - \frac{\sqrt{159} i}{128}\right) + \left(- \frac{79}{128} + \frac{\sqrt{159} i}{128}\right)$$
=
-79 
----
 64 
$$- \frac{79}{64}$$
product
/            _____\ /            _____\
|   79   I*\/ 159 | |   79   I*\/ 159 |
|- --- - ---------|*|- --- + ---------|
\  128      128   / \  128      128   /
$$\left(- \frac{79}{128} - \frac{\sqrt{159} i}{128}\right) \left(- \frac{79}{128} + \frac{\sqrt{159} i}{128}\right)$$
=
25
--
64
$$\frac{25}{64}$$
25/64
Numerical answer [src]
x1 = -0.6171875 - 0.0985118766634257*i
x2 = -0.6171875 + 0.0985118766634257*i
x2 = -0.6171875 + 0.0985118766634257*i