Mister Exam

Other calculators


sin(x)=2

sin(x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) = 2
$$\sin{\left(x \right)} = 2$$
Detail solution
Given the equation
$$\sin{\left(x \right)} = 2$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
x1 = pi - re(asin(2)) - I*im(asin(2))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
x2 = I*im(asin(2)) + re(asin(2))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}$$
x2 = re(asin(2)) + i*im(asin(2))
Sum and product of roots [src]
sum
pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
=
pi
$$\pi$$
product
(pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
=
-(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)$$
-(i*im(asin(2)) + re(asin(2)))*(-pi + i*im(asin(2)) + re(asin(2)))
Numerical answer [src]
x1 = 1.5707963267949 + 1.31695789692482*i
x2 = 1.5707963267949 - 1.31695789692482*i
x2 = 1.5707963267949 - 1.31695789692482*i
The graph
sin(x)=2 equation