Mister Exam

Other calculators


sin(x)=2

sin(x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
sin(x) = 2
sin(x)=2\sin{\left(x \right)} = 2
Detail solution
Given the equation
sin(x)=2\sin{\left(x \right)} = 2
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
0-80-60-40-2020406080-1001005-5
Rapid solution [src]
x1 = pi - re(asin(2)) - I*im(asin(2))
x1=re(asin(2))+πiim(asin(2))x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
x2 = I*im(asin(2)) + re(asin(2))
x2=re(asin(2))+iim(asin(2))x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
x2 = re(asin(2)) + i*im(asin(2))
Sum and product of roots [src]
sum
pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2))
(re(asin(2))+iim(asin(2)))+(re(asin(2))+πiim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
=
pi
π\pi
product
(pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2)))
(re(asin(2))+iim(asin(2)))(re(asin(2))+πiim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
=
-(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2)))
(re(asin(2))+iim(asin(2)))(π+re(asin(2))+iim(asin(2)))- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
-(i*im(asin(2)) + re(asin(2)))*(-pi + i*im(asin(2)) + re(asin(2)))
Numerical answer [src]
x1 = 1.5707963267949 + 1.31695789692482*i
x2 = 1.5707963267949 - 1.31695789692482*i
x2 = 1.5707963267949 - 1.31695789692482*i
The graph
sin(x)=2 equation