sinx/4=-sqrt2/2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\frac{\sin{\left(x \right)}}{4} = \frac{\left(-1\right) \sqrt{2}}{2}$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/4
The equation is transformed to
$$\sin{\left(x \right)} = - 2 \sqrt{2}$$
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
0 + pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 // + - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 //
$$\left(0 + \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)$$
$$\pi$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
1*\pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\- re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 ///
$$\left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right) 1 \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}\right)$$
-(i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))*(pi + i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))
/ / ___\\ / / ___\\
x1 = pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 //
$$x_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}$$
/ / ___\\ / / ___\\
x2 = - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 //
$$x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \sqrt{2} \right)}\right)}$$
x1 = 4.71238898038469 - 1.70004220705667*i
x2 = -1.5707963267949 + 1.70004220705667*i
x2 = -1.5707963267949 + 1.70004220705667*i