sinx/4=-sqrt2/2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
4sin(x)=2(−1)2- this is the simplest trigonometric equation
Divide both parts of the equation by 1/4
The equation is transformed to
sin(x)=−22As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
0 + pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 // + - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 //
(0+(re(asin(22))+π+iim(asin(22))))−(re(asin(22))+iim(asin(22)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
1*\pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\- re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 ///
(−re(asin(22))−iim(asin(22)))1(re(asin(22))+π+iim(asin(22)))
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///*\pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 ///
−(re(asin(22))+iim(asin(22)))(re(asin(22))+π+iim(asin(22)))
-(i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))*(pi + i*im(asin(2*sqrt(2))) + re(asin(2*sqrt(2))))
/ / ___\\ / / ___\\
x1 = pi + I*im\asin\2*\/ 2 // + re\asin\2*\/ 2 //
x1=re(asin(22))+π+iim(asin(22))
/ / ___\\ / / ___\\
x2 = - re\asin\2*\/ 2 // - I*im\asin\2*\/ 2 //
x2=−re(asin(22))−iim(asin(22))
x1 = 4.71238898038469 - 1.70004220705667*i
x2 = -1.5707963267949 + 1.70004220705667*i
x2 = -1.5707963267949 + 1.70004220705667*i