sin(t)=-sqrt(3) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\sin{\left(t \right)} = - \sqrt{3}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
/ / ___\\ / / ___\\
t1 = pi + I*im\asin\\/ 3 // + re\asin\\/ 3 //
$$t_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}$$
/ / ___\\ / / ___\\
t2 = - re\asin\\/ 3 // - I*im\asin\\/ 3 //
$$t_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}$$
t2 = -re(asin(sqrt(3))) - i*im(asin(sqrt(3)))
Sum and product of roots
[src]
/ / ___\\ / / ___\\ / / ___\\ / / ___\\
pi + I*im\asin\\/ 3 // + re\asin\\/ 3 // + - re\asin\\/ 3 // - I*im\asin\\/ 3 //
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right)$$
$$\pi$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
\pi + I*im\asin\\/ 3 // + re\asin\\/ 3 ///*\- re\asin\\/ 3 // - I*im\asin\\/ 3 ///
$$\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\I*im\asin\\/ 3 // + re\asin\\/ 3 ///*\pi + I*im\asin\\/ 3 // + re\asin\\/ 3 ///
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{3} \right)}\right)}\right)$$
-(i*im(asin(sqrt(3))) + re(asin(sqrt(3))))*(pi + i*im(asin(sqrt(3))) + re(asin(sqrt(3))))
t1 = 4.71238898038469 - 1.14621583478059*i
t2 = -1.5707963267949 + 1.14621583478059*i
t2 = -1.5707963267949 + 1.14621583478059*i