Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((4+3*x)/(-2+3*x))^(-7+5*x)
Limit of (5-4*x+3*x^2)/(1-x+2*x^2)
Limit of ((3+2*x)/(7+5*x))^(1+x)
Limit of (1-log(7*x))^(7*x)
Identical expressions
-sqrt(three)
minus square root of (3)
minus square root of (three)
-√(3)
-sqrt3
Similar expressions
sqrt(5+16*x)/(sqrt(-2+9*x)-sqrt(3+4*x))
sqrt(3)
Limit of the function
/
-sqrt(3)
Limit of the function -sqrt(3)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ lim \-\/ 3 / x->oo
lim
x
→
∞
(
−
3
)
\lim_{x \to \infty}\left(- \sqrt{3}\right)
x
→
∞
lim
(
−
3
)
Limit(-sqrt(3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
−
3
)
=
−
3
\lim_{x \to \infty}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
∞
lim
(
−
3
)
=
−
3
lim
x
→
0
−
(
−
3
)
=
−
3
\lim_{x \to 0^-}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
0
−
lim
(
−
3
)
=
−
3
More at x→0 from the left
lim
x
→
0
+
(
−
3
)
=
−
3
\lim_{x \to 0^+}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
0
+
lim
(
−
3
)
=
−
3
More at x→0 from the right
lim
x
→
1
−
(
−
3
)
=
−
3
\lim_{x \to 1^-}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
1
−
lim
(
−
3
)
=
−
3
More at x→1 from the left
lim
x
→
1
+
(
−
3
)
=
−
3
\lim_{x \to 1^+}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
1
+
lim
(
−
3
)
=
−
3
More at x→1 from the right
lim
x
→
−
∞
(
−
3
)
=
−
3
\lim_{x \to -\infty}\left(- \sqrt{3}\right) = - \sqrt{3}
x
→
−
∞
lim
(
−
3
)
=
−
3
More at x→-oo
Rapid solution
[src]
___ -\/ 3
−
3
- \sqrt{3}
−
3
Expand and simplify