Mister Exam

Other calculators:

Limit of the function -sqrt(3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   ___\
 lim \-\/ 3 /
x->oo        
limx(3)\lim_{x \to \infty}\left(- \sqrt{3}\right)
Limit(-sqrt(3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
limx(3)=3\lim_{x \to \infty}\left(- \sqrt{3}\right) = - \sqrt{3}
limx0(3)=3\lim_{x \to 0^-}\left(- \sqrt{3}\right) = - \sqrt{3}
More at x→0 from the left
limx0+(3)=3\lim_{x \to 0^+}\left(- \sqrt{3}\right) = - \sqrt{3}
More at x→0 from the right
limx1(3)=3\lim_{x \to 1^-}\left(- \sqrt{3}\right) = - \sqrt{3}
More at x→1 from the left
limx1+(3)=3\lim_{x \to 1^+}\left(- \sqrt{3}\right) = - \sqrt{3}
More at x→1 from the right
limx(3)=3\lim_{x \to -\infty}\left(- \sqrt{3}\right) = - \sqrt{3}
More at x→-oo
Rapid solution [src]
   ___
-\/ 3 
3- \sqrt{3}