There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- \sqrt{3}\right) = - \sqrt{3}$$ $$\lim_{x \to 0^-}\left(- \sqrt{3}\right) = - \sqrt{3}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(- \sqrt{3}\right) = - \sqrt{3}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(- \sqrt{3}\right) = - \sqrt{3}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(- \sqrt{3}\right) = - \sqrt{3}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(- \sqrt{3}\right) = - \sqrt{3}$$ More at x→-oo