1+sinx/n=7 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$1 + \frac{\sin{\left(x \right)}}{n} = 7$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/n
The equation is transformed to
$$\sin{\left(x \right)} = 6 n$$
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(6 n \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(6 n \right)} + \pi$$
Or
$$x = 2 \pi n + \operatorname{asin}{\left(6 n \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(6 n \right)} + \pi$$
, where n - is a integer
x1 = pi - re(asin(6*n)) - I*im(asin(6*n))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + \pi$$
x2 = I*im(asin(6*n)) + re(asin(6*n))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)}$$
x2 = re(asin(6*n)) + i*im(asin(6*n))
Sum and product of roots
[src]
pi - re(asin(6*n)) - I*im(asin(6*n)) + I*im(asin(6*n)) + re(asin(6*n))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + \pi\right)$$
$$\pi$$
(pi - re(asin(6*n)) - I*im(asin(6*n)))*(I*im(asin(6*n)) + re(asin(6*n)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + \pi\right)$$
-(I*im(asin(6*n)) + re(asin(6*n)))*(-pi + I*im(asin(6*n)) + re(asin(6*n)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(6 n \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(6 n \right)}\right)} - \pi\right)$$
-(i*im(asin(6*n)) + re(asin(6*n)))*(-pi + i*im(asin(6*n)) + re(asin(6*n)))